已知函數(shù)f(x)=x2-alnx(a∈R).
(1)當a=-1時,求函數(shù)f(x)在點x=1處的切線方程及f(x)的單調區(qū)間;
(2)求函數(shù)f(x)的極值.
分析:(1)欲求在點x=1處的切線方程,只須求出其斜率的值即可,故先利用導數(shù)求出在x=1處的導函數(shù)值,再結合導數(shù)的幾何意義即可求出切線的斜率.先求出f(x)的導數(shù),根據(jù)f′(x)>0求得的區(qū)間是單調增區(qū)間,f(x)<0求得的區(qū)間是單調減區(qū)間,從而問題解決.
(2)類似與(1)中的方法,先求出f(x)的導數(shù),根據(jù)f′(x)>0求得的區(qū)間是單調增區(qū)間,f′(x)<0求得的區(qū)間是單調減區(qū)間,求出極值即可.
解答:解:(1)當a=-1時,f(x)=x2+lnx,f′(x)=2x+
1
x
,(1分)
∴f'(1)=3.
函數(shù)f(x)在點x=1處的切線方程為y-1=3(x-1),即y=3x-2(3分)
當x>0時,f′(x)=2x+
1
x
>0
,∴函數(shù)f(x)在(0,+∞)上是增函數(shù),
而f(x)的定義域為(0,+∞),則函數(shù)f(x)的單調增區(qū)間為(0,+∞),不存在遞減區(qū)間.(5分)
(2)函數(shù)f(x)=x2-alnx(a∈R)的定義域為(0,+∞),f′(x)=2x-
a
x
,(6分)
①當a≤0時,f'(x)>0,∴f(x)在(0,+∞)上是增函數(shù);函數(shù)f(x)無極值(8分)
②當a>0時,由f'(x)>0,得x>
2a
2
,(9分)
由f'(x)<0,得0<x<
2a
2
,(10分)
∴當x=
2a
2
時,f(x)有極小值f(
2a
2
)=
1
2
a(1-lna+ln2)
(11分)
綜上,當a≤0時,f(x)無極值;當a>0時,f(x)有極小值
1
2
a(1-lna+ln2)
,無極大值(12分)
點評:本小題主要考查直線的斜率、導數(shù)的幾何意義、利用導數(shù)研究曲線上某點切線方程等基礎知識,考查運算求解能力及分類討論思想.屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案