10.函數(shù)y=|tanx|的對稱軸是x=$\frac{π}{2}k$,k∈Z.

分析 根據(jù)正切函數(shù)的圖象及性質(zhì),y=|tanx|的圖象是y=tanx把x軸的下部分翻折到x軸的上方可得到的直接得答案.

解答 解:函數(shù)y=|tanx|的圖象是y=tanx把x軸的下部分翻折到x軸的上方可得到的.
∴函數(shù)y=|tanx|的對稱軸是x=$\frac{π}{2}k$,k∈Z.
故答案為:x=$\frac{π}{2}k$,k∈Z.

點評 本題考查了y=|tanx|的圖象與y=tanx圖象的關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=lg(x2+ax+b)的定義域為A,$g(x)=\sqrt{k{x^2}+4x+k+3}$的定義域為B.
(1)若B=R,求k的取值范圍;
(2)若(∁RA)∩B=B,(∁RA)∪B={x|-2≤x≤3},求實數(shù)a,b的值及實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.要得到y(tǒng)=sinx的圖象只需將$y=sin(\frac{x}{2}+\frac{π}{3})$的圖象( 。
A.先向左平移$\frac{2π}{3}$單位,再將圖象上各點的橫坐標(biāo)縮短至原來的$\frac{1}{2}$
B.先向右平移$\frac{2π}{3}$單位,再將圖象上各點的橫坐標(biāo)縮短至原來的$\frac{1}{2}$
C.先將圖象上各點的橫坐標(biāo)縮短至原來的$\frac{1}{2}$,再將圖象向左平移$\frac{π}{3}$單位
D.先將圖象上各點橫坐標(biāo)擴大為原來的2倍,再將圖象向右平移$\frac{π}{3}$單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.若無窮數(shù)列{an}滿足:?k∈N*,對于$?n≥{n_0}({n_0}∈{N^*})$,都有an+k-an=d(其中d為常數(shù)),則稱{an}具有性質(zhì)“P(k,n0,d)”.
(Ⅰ)若{an}具有性質(zhì)“P(3,2,0)”,且a2=3,a4=5,a6+a7+a8=18,求a3;
(Ⅱ)若無窮數(shù)列{bn}是等差數(shù)列,無窮數(shù)列{cn}是公比為正數(shù)的等比數(shù)列,b1=c3=2,b3=c1=8,an=bn+cn,判斷{an}是否具有性質(zhì)“P(2,1,0)”,并說明理由;
(Ⅲ)設(shè){an}既具有性質(zhì)“P(i,2,d1)”,又具有性質(zhì)“P(j,2,d2)”,其中i,j∈N*,i<j,i,j互質(zhì),求證:{an}具有性質(zhì)“$P(j-i,i+2,\frac{j-i}{i}{d_1})$”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.某幾何體的三視圖如圖所示,則該幾何體的外接球的體積為( 。
A.$\frac{4}{3}π$B.$\frac{{32\sqrt{3}}}{27}π$C.$\frac{{28\sqrt{3}}}{27}π$D.$\frac{{28\sqrt{21}}}{27}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.現(xiàn)有三張卡片,正面分別標(biāo)有數(shù)字1,2,3,背面完全相同,將卡片洗勻,背面向上放置,甲、乙二人輪流抽取卡片,每人每次抽一張,抽取后不放回,甲先抽.若二人約定,先抽到標(biāo)有偶數(shù)的卡片者獲勝,則甲獲勝的概率是( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.從一批含有11只正品,2只次品的產(chǎn)品中,不放回地抽取3次,每次抽取1只,設(shè)抽得次品數(shù)為X,則E(5X+1)的值為( 。
A.$\frac{42}{13}$B.$\frac{12}{13}$C.$\frac{41}{11}$D.$\frac{6}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在△ABC中,角A,B,C的對邊分別為a,b,c,且A=30°,B=15°,a=3,則c的值為( 。
A.6B.$\frac{3}{2}$C.3$\sqrt{3}$D.3$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)$y=acos(2x+\frac{π}{3})+3$,$x∈[0,\frac{π}{2}]$的最大值為4,則正實數(shù)a的值為2.

查看答案和解析>>

同步練習(xí)冊答案