已知函數(shù)
(Ⅰ)求函數(shù)f(x)的定義域;
(Ⅱ)證明函數(shù)f(x)為奇函數(shù);
(Ⅲ)判斷并證明函數(shù)的單調(diào)性.
【答案】分析:(I)根據(jù)使函數(shù)解析式有意義的原則,構(gòu)造關(guān)于x的不等式,解不等式即可得到函數(shù)f(x)的定義域;
(Ⅱ)由(I)中結(jié)論,可以得到函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱,進(jìn)而判斷f(x)與f(-x)的關(guān)系,即可得到函數(shù)的奇偶性;
(III)任取x1,x2∈(-1,1),且x1<x2,構(gòu)造兩個(gè)函數(shù)值的差,根據(jù)對(duì)數(shù)的運(yùn)算性質(zhì),判斷差的符號(hào),結(jié)合函數(shù)單調(diào)性的定義,即可得到答案.
解答:解:(Ⅰ)由,可得
可得-1<x<1.
即函數(shù)f(x)的定義域?yàn)椋?1,1).              …(4分)
(Ⅱ)由
所以函數(shù)f(x)為奇函數(shù).                   …(8分)
(Ⅲ)任取x1,x2∈(-1,1),且x1<x2,則
=
=
由x1,x2∈(-1,1),且x1<x2,
可知0<1+x1-x2+x1x2<1-x1+x2+x1x2,
所以,
可得,
即f(x1)<f(x2),
所以函數(shù)f(x)在(-1,1)為增函數(shù).                …(12分)
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)的單調(diào)性的判斷與證明,函數(shù)的奇偶性的判斷,對(duì)數(shù)函數(shù)的定義域,其中熟練掌握函數(shù)單調(diào)性,奇偶性的定義,即可得到答案.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù))在上函數(shù)值總小于,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年山東省青島市高三3月統(tǒng)一質(zhì)量檢測(cè)考試(第二套)理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

1的最;

2當(dāng)函數(shù)自變量的取值區(qū)間與對(duì)應(yīng)函數(shù)值的取值區(qū)間相同時(shí),這樣的區(qū)間稱為函數(shù)的保值區(qū)間.設(shè),試問(wèn)函數(shù)上是否存在保值區(qū)間?若存在,請(qǐng)求出一個(gè)保值區(qū)間;若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆湖北孝感高中高三年級(jí)九月調(diào)研考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)的定義域?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2013110223222790919549/SYS201311022324019901876285_ST.files/image002.png">,若上為增函數(shù),則稱為“一階比增函數(shù)”;若上為增函數(shù),則稱為“二階比增函數(shù)”.我們把所有“一階比增函數(shù)”組成的集合記為,所有“二階比增函數(shù)”組成的集合記為.

(Ⅰ)已知函數(shù),若,求實(shí)數(shù)的取值范圍;

(Ⅱ)已知,的部分函數(shù)值由下表給出,

 求證:;

(Ⅲ)定義集合

請(qǐng)問(wèn):是否存在常數(shù),使得,,有成立?若存在,求出的最小值;若不存在,說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年甘肅省武威五中高一(下)3月月考數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù),編寫一個(gè)程序求函數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=試畫出求函數(shù)值的程序框圖.

查看答案和解析>>

同步練習(xí)冊(cè)答案