解:(Ⅰ)   即
     解得
     解得
(Ⅱ)解法一:
化簡得

 解得
所以

所以  化簡

所以是以-2為首項,-1為公差的等差數(shù)列
所以       得
解法二:猜想,下面用數(shù)學歸納法證明:
(1)      當時,,所以當時猜想成立
(2)      假設(shè)當時,猜想成立

那么當時,

所以當時猜想成立。
綜合(1)、(2)可得對于任意的正整數(shù)猜想都成立。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)等差數(shù)列的前n項和為,,則當取最小值時的n值為
A. 6B. 7C. 8D. 9

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分16分)(Ⅰ)(Ⅱ)兩道題普通班可以任意選擇一道解答,實驗班必做(Ⅱ)題
(Ⅰ)已知等比數(shù)列中,,公比
(1)的前項和,證明:
(2)設(shè),求數(shù)列的通項公式.
(Ⅱ)設(shè)正數(shù)數(shù)列{an}的前n項和為Sn滿足Sn (an+1)(n∈N*).
(1)求出數(shù)列{an}的通項公式。
(2)設(shè),記數(shù)列{bn}的前n項和為,求

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知是等差數(shù)列,其前n項和為,已知
(1)求數(shù)列的通項公式; (2)設(shè),證明是等比數(shù)列,并求其前n項和。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知等差數(shù)列{an}滿足a2=0,a6+a8= -10
(I)求數(shù)列{an}的通項公式;
(II)求數(shù)列{}的前n項和。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在等比數(shù)列中,已知 ,求:
(1)數(shù)列的通項公式;(2)數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

下列圖形中線段規(guī)則排列,猜出第6個圖形中線段條數(shù)為_________。
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

((本小題共13分)
若數(shù)列滿足,數(shù)列數(shù)列,記=.
(Ⅰ)寫出一個滿足,且〉0的數(shù)列
(Ⅱ)若,n=2000,證明:E數(shù)列是遞增數(shù)列的充要條件是=2011;
(Ⅲ)對任意給定的整數(shù)n(n≥2),是否存在首項為0的E數(shù)列,使得=0?如果存在,寫出一個滿足條件的E數(shù)列;如果不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知為等差數(shù)列,其公差為-2,且的等比中項,的前n項和, ,則的值為
A.-110B.-90C.90D.110

查看答案和解析>>

同步練習冊答案