若集合M={x|Cxx-2<x},則集合M的元素個(gè)數(shù)為( 。﹤(gè).
A.0B.1
C.2D.以上答案都不對(duì)
由題意可得 x≥2,且x∈N.
由組合數(shù)公式可得,Cxx-2=Cx2
Cxx-2<x?Cx2<x,
x(x-1)
2
<x,?x<3
∴x=2,
故集合M={x|Cxx-2<x},則集合M的元素個(gè)數(shù)為1個(gè),
故選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•湖南)設(shè)函數(shù)f(x)=ax+bx-cx,其中c>a>0,c>b>0.
(1)記集合M={(a,b,c)|a,b,c不能構(gòu)成一個(gè)三角形的三條邊長(zhǎng),且a=b},則(a,b,c)∈M所對(duì)應(yīng)的f(x)的零點(diǎn)的取值集合為
{x|0<x≤1}
{x|0<x≤1}

(2)若a,b,c是△ABC的三條邊長(zhǎng),則下列結(jié)論正確的是
①②③
①②③
.(寫(xiě)出所有正確結(jié)論的序號(hào))
①?x∈(-∞,1),f(x)>0;
②?x∈R,使ax,bx,cx不能構(gòu)成一個(gè)三角形的三條邊長(zhǎng);
③若△ABC為鈍角三角形,則?x∈(1,2),使f(x)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年普通高等學(xué)校招生全國(guó)統(tǒng)一考試湖南卷理數(shù) 題型:022

設(shè)函數(shù)f(x)=ax+bx-cx,其中c>a>0,c>b>0.

(1)記集合M={(a,b,c)|a,b,c不能構(gòu)成一個(gè)三角形的三條邊長(zhǎng),且a=b},則(a,b,c)∈M所對(duì)應(yīng)的f(x)的零點(diǎn)的取值集合為_(kāi)_______.

(2)若a,b,c是△ABC的三條邊長(zhǎng),則下列結(jié)論正確的是________.(寫(xiě)出所有正確結(jié)論的序號(hào))

x∈(-∞,1),f(x)>0,

x∈R,使xax,bx,cx不能構(gòu)成一個(gè)三角形的三條邊長(zhǎng);

③若△ABC為鈍角三角形,則x∈(1,2),使f(x)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:湖南 題型:填空題

設(shè)函數(shù)f(x)=ax+bx-cx,其中c>a>0,c>b>0.
(1)記集合M={(a,b,c)|a,b,c不能構(gòu)成一個(gè)三角形的三條邊長(zhǎng),且a=b},則(a,b,c)∈M所對(duì)應(yīng)的f(x)的零點(diǎn)的取值集合為_(kāi)_____.
(2)若a,b,c是△ABC的三條邊長(zhǎng),則下列結(jié)論正確的是______.(寫(xiě)出所有正確結(jié)論的序號(hào))
①?x∈(-∞,1),f(x)>0;
②?x∈R,使ax,bx,cx不能構(gòu)成一個(gè)三角形的三條邊長(zhǎng);
③若△ABC為鈍角三角形,則?x∈(1,2),使f(x)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年湖南省高考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

設(shè)函數(shù)f(x)=ax+bx-cx,其中c>a>0,c>b>0.
(1)記集合M={(a,b,c)|a,b,c不能構(gòu)成一個(gè)三角形的三條邊長(zhǎng),且a=b},則(a,b,c)∈M所對(duì)應(yīng)的f(x)的零點(diǎn)的取值集合為   
(2)若a,b,c是△ABC的三條邊長(zhǎng),則下列結(jié)論正確的是    .(寫(xiě)出所有正確結(jié)論的序號(hào))
①?x∈(-∞,1),f(x)>0;
②?x∈R,使ax,bx,cx不能構(gòu)成一個(gè)三角形的三條邊長(zhǎng);
③若△ABC為鈍角三角形,則?x∈(1,2),使f(x)=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案