3.已知函數(shù)f(x)=x$\sqrt{1-{x}^{2}}$,則f(sinx)=sinx|cosx|.

分析 利用函數(shù)的解析式,通過同角三角函數(shù)基本關(guān)系式化簡求解即可.

解答 解:函數(shù)f(x)=x$\sqrt{1-{x}^{2}}$,
則f(sinx)=sinx$\sqrt{1-si{n}^{2}x}$=sinx|cosx|.
故答案為:sinx|cosx|.

點評 本題考查函數(shù)的解析式的應(yīng)用,三角函數(shù)的化簡求值,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下四個式子的值都等于同一個常數(shù).
①sin210°+cos240°+sin10°cos40°
②sin220°+cos250°+sin20°cos50°
③sin240°+cos270°+sin40°cos70°
④sin2(-15°)+cos215°+sin(-15°)cos15°
(1)試從上述四個式子中選擇一個,求出這個常數(shù).
(2)根據(jù)(1)的計算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣成三角恒等式,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)集合M={x|(x+2)(x-3)<0},N={x|y=log2(x-1)},則M∩N等于( 。
A.(1,2)B.(-1,2)C.(1,3)D.(-1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.直線Ax+By+C=0(A,B不同時為0)的系數(shù)A,B,C滿足什么關(guān)系時,這條直線有以下性質(zhì):
(1)與兩條坐標(biāo)軸都相交;
(2)只與x軸相交;
(3)只與y軸相交;
(4)是x軸所在直線;
(5)是y軸所在直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知向量$\overrightarrow{m}$=(1,$\sqrt{3}$),$\overrightarrow{n}$=(sinx,cosx),設(shè)函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$
(1)求函數(shù)f(x)的最小正周期和最大值;
(2)設(shè)銳角△ABC的三個內(nèi)角A,B,C的對邊分別為a,b,c,若c=$\sqrt{6}$,cosB=$\frac{1}{3}$,且f(C)=$\sqrt{3}$,求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.當(dāng)x=2時,函數(shù)f(x)=ax3-bx+4有極值-$\frac{4}{3}$,則函數(shù)的解析式為(  )
A.f(x)=$\frac{1}{3}$x3-4x+4B.f(x)=$\frac{1}{3}$x2+4C.f(x)=3x3+4x+4D.f(x)=3x3-4x+4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)復(fù)數(shù)z滿足$\frac{{1-\sqrt{3}z}}{{1+\sqrt{3}z}}=i$,則|z|=(  )
A.$\sqrt{3}$B.$\sqrt{6}$C.$\frac{{2\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.PM2.5是指空氣中直徑小于或等于2.5微米的顆粒物(也稱可入肺顆粒物).為了探究車流量與PM2.5的濃度是否相關(guān),現(xiàn)采集到某城市周一至周五某一時間段車流量與PM2.5的數(shù)據(jù)如表:
時間周一周二周三周四周五
車流量x(萬輛)5051545758
PM2.5的濃度y(微克/立方米)6970747879
(1)根據(jù)上表數(shù)據(jù),請在如圖坐標(biāo)系中畫出散點圖;
(2)根據(jù)上表數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\widehaty=\widehatbx+\widehata$;(保留2位小數(shù))
(3)若周六同一時間段車流量是25萬輛,試根據(jù)(2)求出的線性回歸方程預(yù)測,此時PM2.5的濃度為多少(保留整數(shù))?
參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知數(shù)列{an}的前n項的和為Sn=n2-n+1(n∈N*),則數(shù)列{an}的第6項是(  )
A.10B.12C.21D.31

查看答案和解析>>

同步練習(xí)冊答案