(本小題13分)曲線上任意一點M滿足, 其中F(-F( 拋物線的焦點是直線y=x-1與x軸的交點, 頂點為原點O.
(1)求的標準方程;
(2)請問是否存在直線滿足條件:①過的焦點;②與交于不同
兩點,,且滿足?若存在,求出直線的方程;若不
存在,說明理由.
(1) 的方程為:, 的方程為:。
(2)存在直線滿足條件,且的方程為

試題分析:(1)由題意結(jié)合橢圓的定義和拋物線的焦點坐標,得到關(guān)系式。
(2)假設(shè)存在這樣的直線,設(shè)其方程為,聯(lián)立方程組,結(jié)合韋達定理和向量數(shù)量積得到。
解:(1) 的方程為:, 的方程為:。
(2)假設(shè)存在這樣的直線,設(shè)其方程為,兩交點坐標為
消去,得,
     ①

,②

將①②代入③得,解得
所以假設(shè)成立,即存在直線滿足條件,且的方程為
點評:解決該試題的關(guān)鍵是能利用圖像變換準確得到曲線的方程然后利用向量的數(shù)量積來求解得到參數(shù)的值。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知頂點在坐標原點,焦點在軸正半軸的拋物線上有一點點到拋物線焦點的距離為1.(1)求該拋物線的方程;(2)設(shè)為拋物線上的一個定點,過作拋物線的兩條互相垂直的弦,,求證:恒過定點.(3)直線與拋物線交于,兩點,在拋物線上是否存在點,使得△為以為斜邊的直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線(p>0)的焦點與雙曲線的右焦點的連線交于第一象限的點。若在點處的切線平行于的一條漸近線。則(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線的焦點坐標是          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的焦點坐標為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若拋物線上一點軸的距離為3,則點到拋物線的焦點的距離為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點是拋物線上的動點,是拋物線的焦點,若點,則的最小值是         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線在點(0,1)處的切線方程為           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)曲線與直線相切,則________ 

查看答案和解析>>

同步練習(xí)冊答案