分析 (Ⅰ)由化簡(jiǎn)ρ2cos2θ+8ρcosθ=ρ2+8得ρ2(2cos2θ-1)+8ρcosθ=ρ2+8⇒⇒曲線C1的直角坐標(biāo)方程:y2=4(x-1).
(Ⅱ)把C2的方程$\left\{\begin{array}{l}{x=2+tcosα}\\{y=tsinα}\end{array}\right.$ 代入曲線C1的方程,y2=4(x-1).得t2sin2α-4tcosα-4=0.
|AB|=|t1-t2|=8⇒(t1+t2)2-4t1t2=64,⇒sin2α、tanα
解答 解:(Ⅰ)由ρ2cos2θ+8ρcosθ=ρ2+8得ρ2(2cos2θ-1)+8ρcosθ=ρ2+8⇒2x2+8x=2x2+2y2+8
⇒曲線C1的直角坐標(biāo)方程:y2=4(x-1).
(Ⅱ)把C2的方程$\left\{\begin{array}{l}{x=2+tcosα}\\{y=tsinα}\end{array}\right.$ 代入曲線C1的方程,y2=4(x-1).得t2sin2α-4tcosα-4=0.
t1+t2=$\frac{4cosα}{si{n}^{2}α}$,t1t2=-$\frac{4}{si{n}^{2}α}$.
∴|AB|=|t1-t2|=8⇒(t1+t2)2-4t1t2=64,⇒sin2α=$\frac{1}{2}$,tanα=±1∴直線AB的斜率為±1.
點(diǎn)評(píng) 本題考查了直線參數(shù)方程及其應(yīng)用、極坐標(biāo)方程化為直角坐標(biāo)方程,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 球的截面中過(guò)球心的截面面積未必最大 | |
B. | 圓錐截去一個(gè)小圓錐后剩下來(lái)的部分是圓臺(tái) | |
C. | 棱錐截去一個(gè)小棱錐后剩下來(lái)的部分是棱臺(tái) | |
D. | 用兩個(gè)平行平面去截圓柱,截得的中間部分還是圓柱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com