精英家教網 > 高中數學 > 題目詳情

【題目】設f(x)是連續(xù)的偶函數,且當x>0時,f(x)是單調函數,則滿足f(x)=f( )的所有x之和為(
A.﹣4031
B.﹣4032
C.﹣4033
D.﹣4034

【答案】B
【解析】解::∵f(x)為偶函數,且當x>0時f(x)是單調函數,∵f(x)=f( ),
∴x= ,或﹣x=
∴x2+2015x﹣2015=0或x2+2017x+2015=0,
此時x1+x2=﹣2015,或x3+x4=﹣2017,
∴滿足f(x)=f( )的所有x之和為﹣2015﹣2017=﹣4032,
故選:B.
【考點精析】本題主要考查了奇偶性與單調性的綜合的相關知識點,需要掌握奇函數在關于原點對稱的區(qū)間上有相同的單調性;偶函數在關于原點對稱的區(qū)間上有相反的單調性才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】共享單車是指企業(yè)在校園、地鐵站點、公交站點、居民區(qū)、商業(yè)區(qū)、公共服務區(qū)等提供自行車單車共享服務,是共享經濟的一種新形態(tài),一個共享單車企業(yè)在某個城市就“一天中一輛單車的平均成本(單位:元)與租用單車的數量(單位:車輛)之間的關系”進行調查研究,在調查過程中進行了統(tǒng)計,得出相關數據見下表:

租用單車數量(千輛)

2

3

4

5

8

每天一輛車平均成本(元)

3.2

2.4

2

1.9

1.7

根據以上數據,研究人員分別借助甲、乙兩種不同的回歸模型,得到兩個回歸方程,方程甲: ,方程乙: .

(1)為了評價兩種模型的擬合效果,完成以下任務:

①完成下表(計算結果精確到0.1)(備注: , 稱為相應于點的殘差(也叫隨機誤差));

租用單車數量(千輛)

2

3

4

5

8

每天一輛車平均成本(元)

3.2

2.4

2

1.9

1.7

模型甲

估計值

2.4

2.1

1.6

殘差

0

0.1

模型乙

估計值

2.3

2

1.9

殘差

0.1

0

0

②分別計算模型甲與模型乙的殘差平方和,并通過比較, 的大小,判斷哪個模型擬合效果更好.

(2)這個公司在該城市投放共享單車后,受到廣大市民的熱烈歡迎,共享單車常常供不應求,于是該公司研究是否增加投放,根據市場調查,這個城市投放8千輛時,該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.6,0.4;投放1萬輛時,該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.4,0.6,問該公司應該投放8千輛還是1萬輛能獲得更多利潤?(按(1)中擬合效果較好的模型計算一天中一輛單車的平均成本,利潤=收入—成本).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】根據“2015年國民經濟和社會發(fā)展統(tǒng)計公報” 中公布的數據,從2011 年到2015 年,我國的

第三產業(yè)在中的比重如下:

年份

年份代碼

第三產業(yè)比重

(1)在所給坐標系中作出數據對應的散點圖;

(2)建立第三產業(yè)在中的比重關于年份代碼的回歸方程;

(3)按照當前的變化趨勢,預測2017 年我國第三產業(yè)在中的比重.

附注: 回歸直線方程中的斜率和截距的最小二乘估計公式分別為:

, .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=lnx﹣ax,(a∈R)
(1)若函數f(x)在點(1,f(1))處切線方程為y=3x+b,求a,b的值;
(2)當a>0時,求函數f(x)在[1,2]上的最小值;
(3)設g(x)=x2﹣2x+2,若對任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定點,定直線,動點到點的距離與到直線的距離之比等于.

(1)求動點的軌跡的方程;

(2)設軌跡軸負半軸交于點,過點作不與軸重合的直線交軌跡于兩點,直線分別交直線于點.試問:在軸上是否存在定點,使得?若存在,求出定點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某中學擬在高一下學期開設游泳選修課,為了了解高一學生喜歡游泳是否與性別有關,現(xiàn)從高一學生中抽取人做調查,得到如下列聯(lián)表:

已知在這人中隨機抽取一人抽到喜歡游泳的學生的概率為,

(Ⅰ)請將上述列聯(lián)表補充完整,并判斷是否有%的把握認為喜歡游泳與性別有關?并說明你的理由;

(Ⅱ)針對問卷調查的名學生,學校決定從喜歡游泳的人中按分層抽樣的方法隨機抽取人成立游泳科普知識宣傳組,并在這人中任選兩人作為宣傳組的組長,求這兩人中至少有一名女生的概率,參考公式: ,其中.參考數據:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知等差數列{an},滿足d>0,且a1+a2+a3=9,a1a3=5
(1)求{an}的通項公式;
(2)若數列{bn}滿足bn= ,Sn為數列{bn}的前n項和,證明:Sn<3.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】圓心在直線2x-3y-1=0上的圓與x軸交于A(1,0),B(3,0)兩點,則圓的方程為( )
A.(x-2)2+(y+1)2=2
B.(x+2)2+(y-1)2=2
C.(x-1)2+(y-2)2=2
D.(x-2)2+(y-1)2=2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=2sinxcosx+2 cos2x﹣
(1)求函數f(x)的單調減區(qū)間;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,已知a=1,b= ,f(A﹣ )= ,求角C.

查看答案和解析>>

同步練習冊答案