已知A、B是△ABC的兩個內(nèi)角,且sinA=,sin(A+B)=1,求sin(3A+2B)的值.

解析:∵0<A<π,0<B<π且0<A+B<π,∴由sin(A+B)=1有A+B=.

而sinA=,∴sin(3A+2B)=sin[2(A+B)+A]=sin(π+A)=-sinA=-.

溫馨提示

    本題中A、B為三角形的內(nèi)角是一個隱含條件,要根據(jù)題意利用好.另外題中涉及到角的變換,如3A+2B=2(A+B)+A,α=(α+β)-β等等,在求值時常要對角進行變換(看具體情況而定),以利于求值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B是△ABC的兩個內(nèi)角,且tanA、tanB是方程x2+mx+m+1=0的兩個實根,求m的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B是△ABC的兩個內(nèi)角,若p:sinA<sin(A+B),q:A∈(0,
π
2
),則p是q的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B是△ABC的兩個內(nèi)角,
a
=
2
cos
A+B
2
i
+sin
A-B
2
j
,(其中
i
j
是互相垂直的單位向量),若|
a
|=
6
2

(1)試問tanA•tanB是否為定值,若是定值,請求出,否則請說明理由;
(2)求tanC的最大值,并判斷此時三角形的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•棗莊二模)已知A,B是△ABC的兩個內(nèi)角,向量
a
=(
2
cos
A+B
2
,sin
A-B
2
)
,且|
a
|=
6
2

(1)證明:tanAtanB為定值;
(2)若A=
π
6
,AB=2
,求邊BC上的高AD的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B是△ABC的兩個內(nèi)角,
a
=
2
cos
A+B
2
i
+sin
A-B
2
j
,其中
i
j
為互相垂直的單位向量,若|
a
|=
6
2
.求tanA•tanB的值.

查看答案和解析>>

同步練習(xí)冊答案