已知數(shù)列{an}是正項(xiàng)等比數(shù)列,若a2=2,2a3+a4=16則數(shù)列{an}的通項(xiàng)公式為( )
A.2n-2
B.22-n
C.2n-1
D.2n
【答案】分析:由等比數(shù)列的通項(xiàng)公式,結(jié)合已知即可求解公比q,然后代入等比數(shù)列的通項(xiàng)公式,即可求解
解答:解:∵a2=2,2a3+a4=16
∴2a2q=16
∴q2+2q=8
∵q>0
∴q=2,=2n-1
故選C
點(diǎn)評:本題主要考查了等比數(shù)列的通項(xiàng)公式的應(yīng)用,屬于基礎(chǔ)試題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是正項(xiàng)等差數(shù)列,給出下列判斷:
①a2+a8=a4+a6;②a4•a6≥a2•a8;③a52≤a4•a6;④a2+a8≥2
a4a6
.其中有可能正確的是(  )
A、①④B、①②④
C、①③D、①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是正項(xiàng)等比數(shù)列,公比q≠1,若lga2是lga1和1+lga4的等差中項(xiàng),且a1a2a3=1.
(1)求數(shù)列{an}的通項(xiàng)公式
(2)設(shè)cn=
1n(3-lgan)
(n∈N*)
,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是正項(xiàng)等比數(shù)列,若a1=32,a4=4,則數(shù)列{log2an}的前n項(xiàng)和Sn的最大值為
15
15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•南寧模擬)已知數(shù)列{an}是正項(xiàng)等比數(shù)列,若a2=2,2a3+a4=16則數(shù)列{an}的通項(xiàng)公式為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•桂林模擬)已知數(shù)列{an}是正項(xiàng)數(shù)列,其首項(xiàng)a1=3,前n項(xiàng)和為Sn,4Sn=
a
2
n
+2an+4(n≥2)

(1)求數(shù)列{an}的第二項(xiàng)a2及通項(xiàng)公式;
(2)設(shè)bn=
1
Sn
,記數(shù)列{bn}的前n項(xiàng)和為Kn,求證:Kn
17
21

查看答案和解析>>

同步練習(xí)冊答案