某甲有一個(gè)放有3個(gè)紅球、2個(gè)白球、1個(gè)黃球共6個(gè)球的箱子;某乙也有一個(gè)放有3個(gè)紅球、2個(gè)白球、1個(gè)黃球共6個(gè)球的箱子.
(Ⅰ)若甲在自己的箱子里任意取球,取后不放回,每次只取一個(gè)球,直到取到紅球?yàn)橹,求甲取球次?shù)ξ的數(shù)學(xué)期望;
(Ⅱ)若甲、乙兩人各從自己的箱子里任取一球比顏色,規(guī)定同色時(shí)為甲勝,異色時(shí)為乙勝,這個(gè)游戲規(guī)則公平嗎?請(qǐng)說明理由.
【答案】分析:(Ⅰ)由題意知甲取球次數(shù)ξ的取值為1,2,3,4,分別求出其發(fā)生的概率,進(jìn)而求出次數(shù)ξ的數(shù)學(xué)期望.
(Ⅱ)由題意可得,求出兩人各自從自己箱子里任取一球不同的取法,以及是同色球的取法,再根據(jù)等可能事件的概率可得答案.
解答:解:(Ⅰ)由題意知甲取球次數(shù)ξ的取值為1,2,3,4
所以;;
…(4分)
則甲取球次數(shù)ξ的數(shù)學(xué)期望為:
…(6分)
(Ⅱ)由題意,兩人各自從自己箱子里任取一球比顏色共有C61•C61=36(種) 不同的情形…(8分)
每種情形都是等可能的,記甲獲勝為事件A,則…(11分)
所以甲獲勝的概率小于乙獲勝的概率,這個(gè)游戲規(guī)則不公平.…(12分)
點(diǎn)評(píng):解決此類問題的關(guān)鍵是熟練掌握離散型隨機(jī)變量的期望與方差的有關(guān)公式,以及掌握等可能事件的概率.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2009•濟(jì)寧一模)某甲有一個(gè)放有3個(gè)紅球、2個(gè)白球、1個(gè)黃球共6個(gè)球的箱子;某乙也有一個(gè)放有3個(gè)紅球、2個(gè)白球、1個(gè)黃球共6個(gè)球的箱子.
(Ⅰ)若甲在自己的箱子里任意取球,取后不放回,每次只取一個(gè)球,直到取到紅球?yàn)橹梗蠹兹∏虼螖?shù)ξ的數(shù)學(xué)期望;
(Ⅱ)若甲、乙兩人各從自己的箱子里任取一球比顏色,規(guī)定同色時(shí)為甲勝,異色時(shí)為乙勝,這個(gè)游戲規(guī)則公平嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年濟(jì)寧質(zhì)檢一理)(12分)

    某甲有一個(gè)放有3個(gè)紅球、2個(gè)白球、1個(gè)黃球共6個(gè)球的箱子;某乙也有一個(gè)放有3個(gè)紅球、2個(gè)白球、1個(gè)黃球共6個(gè)球的箱子.

(Ⅰ)若甲在自己的箱子里任意取球,取后不放回,每次只取一個(gè)球,直到取到紅球?yàn)橹梗蠹兹∏虼螖?shù)的數(shù)學(xué)期望;

(Ⅱ)若甲、乙兩人各從自己的箱子里任取一球比顏色,規(guī)定同色時(shí)為甲勝,異色時(shí)為乙勝,這個(gè)游戲規(guī)則公平嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

    某甲有一個(gè)放有3個(gè)紅球、2個(gè)白球、1個(gè)黃球共6個(gè)球的箱子;某乙也有一個(gè)放有3個(gè)紅球、2個(gè)白球、1個(gè)黃球共6個(gè)球的箱子.

(Ⅰ)若甲在自己的箱子里任意取球,取后不放回,每次只取一個(gè)球,直到取到紅球?yàn)橹梗蠹兹∏虼螖?shù)的數(shù)學(xué)期望;

(Ⅱ)若甲、乙兩人各從自己的箱子里任取一球比顏色,規(guī)定同色時(shí)為甲勝,異色時(shí)為乙勝,這個(gè)游戲規(guī)則公平嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年山東省濟(jì)寧五中高三5月模擬數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

某甲有一個(gè)放有3個(gè)紅球、2個(gè)白球、1個(gè)黃球共6個(gè)球的箱子;某乙也有一個(gè)放有3個(gè)紅球、2個(gè)白球、1個(gè)黃球共6個(gè)球的箱子.
(Ⅰ)若甲在自己的箱子里任意取球,取后不放回,每次只取一個(gè)球,直到取到紅球?yàn)橹梗蠹兹∏虼螖?shù)ξ的數(shù)學(xué)期望;
(Ⅱ)若甲、乙兩人各從自己的箱子里任取一球比顏色,規(guī)定同色時(shí)為甲勝,異色時(shí)為乙勝,這個(gè)游戲規(guī)則公平嗎?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案