(本題滿分16分) 矩形ABCD中,AB =2,AD = ,H是AB中點(diǎn),以H為直角頂點(diǎn)作矩形的內(nèi)接直角三角形HEF,其中E,F分別落在線段BC和線段AD上,如圖.記∠BHE為θ,記Rt△EHF的周長為 l.⑴試將 l 表示為 θ 的函數(shù);
⑵求 l 的最小值及此時的 θ.
(Ⅰ) l = (θ ∈[,]); (Ⅱ) 2( +1)
⑴∵△EHF是直角三角形,∠BHE = θ,∴∠AFH = θ,∵AB =2,H是AB中點(diǎn),
∴ AH = FHsin θ = 1,FH = ,同理EH = , 3分
∴ l = FH +EH +EF = + + = , 6分
當(dāng)F與D重合時,θ 取到最小值 ,當(dāng)E與C重合時,θ 取到最大值 ,
∴ θ ∈[,],∴ l = (θ ∈[,]); 8分
⑵令sin θ + cos θ = t,則sin θcos θ = ,∴ l = = , 11分
∵θ ∈[,],∴θ + ∈[,],t = sin(θ +)∈[,], 14分
∴ 當(dāng)t = 時,即 θ = 時,l取到最小值 = 2( +1)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
a1+2a2+3a3+…+nan |
1+2+3+…+n |
n(n+1)(2n+1) |
6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分16分)本題共有2個小題,第1小題滿分8分,第2小題滿分8分.
已知函數(shù)(,、是常數(shù),且),對定義域內(nèi)任意(、且),恒有成立.
(1)求函數(shù)的解析式,并寫出函數(shù)的定義域;
(2)求的取值范圍,使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分16分)已知數(shù)列的前項(xiàng)和為,且.?dāng)?shù)列中,,
.(1)求數(shù)列的通項(xiàng)公式;(2)若存在常數(shù)使數(shù)列是等比數(shù)列,求數(shù)列的通項(xiàng)公式;(3)求證:①;②.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:江蘇省私立無錫光華學(xué)校2009—2010學(xué)年高二第二學(xué)期期末考試 題型:解答題
本題滿分16分)已知圓內(nèi)接四邊形ABCD的邊長分別為AB = 2,BC = 6,CD = DA = 4;求四邊形ABCD的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學(xué)卷(文) 題型:解答題
(本題滿分16分;第(1)小題5分,第(2)小題5分,第三小題6分)
已知函數(shù)
(1)判斷并證明在上的單調(diào)性;
(2)若存在,使,則稱為函數(shù)的不動點(diǎn),現(xiàn)已知該函數(shù)有且僅有一個不動點(diǎn),求的值;
(3)若在上恒成立 , 求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com