四棱錐中,底面為平行四邊形,側(cè)面面,已知
(Ⅰ)求證:;
(Ⅱ)在SB上選取點(diǎn)P,使SD//平面PAC ,并證明;
(Ⅲ)求直線與面所成角的正弦值。
(1)(2)詳見試題解析;
解析試題分析:(Ⅰ)要證線線垂直只要證明線面垂直,利用題中數(shù)據(jù)求出底面平行四邊形的各邊的長(zhǎng)度,找到 及 是等腰三角形,利用等腰三角形中線是高結(jié)論找到“線線垂直”關(guān)系(Ⅱ)要找線面平行先找線線平行,要找線線平行先找面面交線,即平面 與平面交線 , 注意到為中點(diǎn)的特點(diǎn),即可導(dǎo)致∥,從而推出線面平行 (Ⅲ)建立空間直角坐標(biāo)系,確定關(guān)鍵點(diǎn)的坐標(biāo),再運(yùn)用空間向量進(jìn)行運(yùn)算.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐P-ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,E是PB的中點(diǎn).
(1)求證:平面EAC⊥平面PBC;
(2)若二面角P-AC-E的余弦值為,求直線PA與平面EAC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,平面平面,是等腰直角三角形,,四邊形是直角梯形,∥AE,,,分別為的中點(diǎn).
(1)求異面直線與所成角的大;
(2)求直線和平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在三棱柱中,△是邊長(zhǎng)為的等邊三角形,平面,,分別是,的中點(diǎn).
(1)求證:∥平面;
(2)若為上的動(dòng)點(diǎn),當(dāng)與平面所成最大角的正切值為時(shí),求平面 與平面所成二面角(銳角)的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在直四棱柱中,底面為平行四邊形,且,,,為的中點(diǎn).
(1) 證明:∥平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱錐P-ABCD的底面ABCD為矩形,且PA="AD=1,AB=2," ,.
(1)求證:平面平面;
(2)求三棱錐D-PAC的體積;
(3)求直線PC與平面ABCD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題12分)如圖:四棱錐P—ABCD中,底面ABCD
是矩形,PA⊥底面ABCD,PA=AB=1,AD=,點(diǎn)F是PB的中點(diǎn),點(diǎn)E在邊BC上移動(dòng).
(1)證明:無(wú)論點(diǎn)E在BC邊的何處,都有PE⊥AF;
(2)當(dāng)BE等于何值時(shí),PA與平面PDE所成角的大小為45°.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com