(10分)坐標系與參數(shù)方程已知圓系的方程為x2+y2-2axCos-2aySin=0(a>0)

   (1)求圓系圓心的軌跡方程;

   (2)證明圓心軌跡與動圓相交所得的公共弦長為定值;

解析:(1)由已知圓的標準方程為:(x-aCosφ)2+(y-aSinφ)2=a2(a>0)

設(shè)圓的圓心坐標為(x,y),

為參數(shù)),消參數(shù)得圓心的軌跡方程為:x2+y2=a2,(5分)

  (2)有方程組得公共弦的方

程:圓X2+Y2=a2的圓心到公共弦的距離d=,(定值)

∴弦長l=(定值)        (5分)
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(1)選修4-2:矩陣與變換
二階矩陣M對應的變換將點(1,-1)與(-2,1)分別變換成點(-1,-1)與(0,-2).
(Ⅰ)求矩陣M的逆矩陣M-1;
(Ⅱ)設(shè)直線l在變換M作用下得到了直線m:2x-y=4,求l的方程.
(2)選修4-4:坐標系與參數(shù)方程
已知直線的極坐標方程為ρsin(θ+
π
4
)=
2
2
,圓M的參數(shù)方程為
x=2cosθ
y=-2+2sinθ
(其中θ為參數(shù)).
(Ⅰ)將直線的極坐標方程化為直角坐標方程;
(Ⅱ)求圓M上的點到直線的距離的最小值.
(3)選修4一5:不等式選講
已知函數(shù)f(x)=|x-1|+|x+3|.
(Ⅰ)求x的取值范圍,使f(x)為常數(shù)函數(shù);
(Ⅱ)若關(guān)于x的不等式f(x)-a≤0有解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

坐標系與參數(shù)方程 
已知橢圓C:
x2
16
+
y2
9
=1
與x正半軸、y正半軸的交點分別為A,B,動點P是橢圓上任一點,求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•荊州模擬)請在下面兩題中選做一題,如果多做,則按所做的第一題計分.
選修4-1:幾何證明選講
如圖,割線PBC經(jīng)過圓心O,PB=OB=1,圓周上有一點D,滿足∠COD=60°,連PD交圓于點E,則PE=
3
7
7
3
7
7

選修4-4:坐標系與參數(shù)方程
已知直線l經(jīng)過點P(1,-1),傾斜角的余弦值為-
4
5
,圓C的極坐標方程為ρ=
2
cos(θ+
π
4
)
,設(shè)直線l與圓C交于A,B兩點,則弦長|AB|=
7
5
7
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選修4-4:坐標系與參數(shù)方程
已知曲線C1的極坐標方程為ρ=4sinθ,曲線C2的極坐標方程為θ=
π6
(ρ∈R)
,曲線C1,C2相交于點M,N.
(1)將曲線C1,C2的極坐標方程化為直角坐標方程;
(2)求線段MN的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選修4-4:極坐標系與參數(shù)方程
已知曲線C1
x=-4+cost
y=3+sint
(t為參數(shù)),C2
x=8cosθ
y=3sinθ
(θ為參數(shù)).
(1)化C1,C2的方程為普通方程;
(2)若C1上的點P對應的參數(shù)為t=
π
2
,Q為C2上的動點,求PQ中點M到直線C3
x=3+2t
y=-2+t
(t為參數(shù))距離的最小值.

查看答案和解析>>

同步練習冊答案