已知雙曲線的焦點(diǎn)在y軸上,兩頂點(diǎn)間的距離為4,漸近線方程為y=±2x.
(Ⅰ)求雙曲線的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)(Ⅰ)中雙曲線的焦點(diǎn)F1,F(xiàn)2關(guān)于直線y=x的對(duì)稱點(diǎn)分別為F1′,F(xiàn)2′,求以F1′,F(xiàn)2′為焦點(diǎn),且過(guò)點(diǎn)P(0,2)的橢圓方程.

解:(Ⅰ)因?yàn)殡p曲線的焦點(diǎn)在y軸上,設(shè)所求雙曲線的方程為
由題意,得解得a=2,b=1.
所求雙曲線的方程為
(Ⅱ)由(Ⅰ)可求得F1(0,-),F(xiàn)2(0,).
點(diǎn)F1,F(xiàn)2關(guān)于直線y=x的對(duì)稱點(diǎn)分別為F1′(-,0),F(xiàn)2′(,0),又P(0,2),設(shè)橢圓方程為(m>n>0).
由橢圓定義,得2m=6,∴m=3
因?yàn)閙2-n2=5,所以n2=4.
所以橢圓的方程為
分析:(Ⅰ)根據(jù)雙曲線的焦點(diǎn)在y軸上,設(shè)所求雙曲線的方程為.由題意,列出關(guān)于a,b的方程,解得a=2,b=1.從而寫出雙曲線的方程即可;
(Ⅱ)由(Ⅰ)可求得F1(0,-),F(xiàn)2(0,).根據(jù)點(diǎn)F1,F(xiàn)2關(guān)于直線y=x的對(duì)稱點(diǎn)分別為F1′(-,0),F(xiàn)2′(,0),設(shè)橢圓方程為(m>n>0).由橢圓定義,得出m,n的值,從而寫出橢圓的方程即可.
點(diǎn)評(píng):本題主要考查了直線與圓錐曲線的綜合問(wèn)題.直線與圓錐曲線聯(lián)系在一起的綜合題在高考中多以高檔題、壓軸題出現(xiàn),主要涉及位置關(guān)系的判定,弦長(zhǎng)問(wèn)題、最值問(wèn)題、對(duì)稱問(wèn)題、軌跡問(wèn)題等.突出考查了數(shù)形結(jié)合、分類討論、函數(shù)與方程、等價(jià)轉(zhuǎn)化等數(shù)學(xué)思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的焦點(diǎn)在y軸上,兩頂點(diǎn)間的距離為4,漸近線方程為y=±2x.
(Ⅰ)求雙曲線的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)(Ⅰ)中雙曲線的焦點(diǎn)F1,F(xiàn)2關(guān)于直線y=x的對(duì)稱點(diǎn)分別為F1′,F(xiàn)2′,求以F1′,F(xiàn)2′為焦點(diǎn),且過(guò)點(diǎn)P(0,2)的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的焦點(diǎn)在y軸,實(shí)軸長(zhǎng)為8,離心率e=
2
,過(guò)雙曲線的弦AB被點(diǎn)P(4,2)平分;
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)求弦AB所在直線方程;
(3)求直線AB與漸近線所圍成三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的焦點(diǎn)在y軸上,并且雙曲線經(jīng)過(guò)點(diǎn)A(2, )及點(diǎn)B(,4),則雙曲線的方程為…(  )

A.=1                         B.=1

C.                          D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的焦點(diǎn)在y軸上,并且雙曲線過(guò)點(diǎn)(3,-4)、(,5),則雙曲線的標(biāo)準(zhǔn)方程為(    )

A.=1                             B.=-1

C.=1                             D.=-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的焦點(diǎn)在y軸上,并且雙曲線過(guò)點(diǎn)(3,-4)、(,5),則雙曲線的標(biāo)準(zhǔn)方程為(    )

A.=1                             B.=-1

C.=1                             D.=-1

查看答案和解析>>

同步練習(xí)冊(cè)答案