已知函數(shù)的圖象與函數(shù)的圖象關(guān)于點(diǎn)A(0,1對稱.(Ⅰ)求的解析式;(Ⅱ)若上為增函數(shù),求實(shí)數(shù)a的取值范圍.

(Ⅰ)(Ⅱ)


解析:

(Ⅰ)設(shè)P(x,y)為圖象上任一點(diǎn),則點(diǎn)P關(guān)于點(diǎn)A的對稱點(diǎn)為

Q(-x,2-y),由已知條件知點(diǎn)Q在h(x)的圖象上.…………2分

  …………3分

(Ⅱ)∵  …………2分

在R上為增函數(shù),  ∴在R上恒成立. …………2分

只需恒成立,即只需即可.∴a的取值范圍是……3分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(理)已知函數(shù)f(x)=αx3+bx2+cx+d(a、b、c、d∈R)為奇函數(shù),且在f′(x)min=-1(x∈R),
lim
x→0
f(3+x)-f(3)
x
=8

(1)求函數(shù)f(x)的表達(dá)式;
(2)若函數(shù)f(x)的圖象與函數(shù)m(x)=nx2-2x的圖象有三個(gè)不同的交點(diǎn),且都在y軸的右方,求實(shí)數(shù)n的取值范圍;
(3)若g(x)與f(x)的表達(dá)式相同,是否存在區(qū)間[a,b],使得函數(shù)g(x)的定義域和值域都是[a,b],若存在,求出滿足條件的一個(gè)區(qū)間[a,b];若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
2a2
x2
(a>0)
,設(shè)F(x)=f(x)+g(x).
(1)求F(x)的單調(diào)區(qū)間;
(2)若以H(x)=f(x)+
2g(x)
,圖象上任意一點(diǎn)P(x0,y0)為切點(diǎn)的切線的斜率k≤1恒成立,求實(shí)數(shù)a的最小值;
(3)是否存在實(shí)數(shù)m,使得函數(shù)p(x)=g(
4a2
x2+1
)+m-1
的圖象與q(x)=f(1+x2)的圖象恰好有四個(gè)不同的交點(diǎn)?若存在,求出m的取值范圍,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)的圖象與函數(shù)的圖象關(guān)于點(diǎn)A(0,1)對稱.

    (I)求的值;

    (II)若,且在區(qū)間上為減函數(shù),求實(shí)數(shù)的取值范圍;

    (III)在條件(II)下,試證明函數(shù)與函數(shù)圖象的交點(diǎn)不可能落在軸的左側(cè).

  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆廣東省高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:填空題

已知函數(shù)的圖象與函數(shù)的圖象恰有兩個(gè)交點(diǎn),則實(shí)數(shù)k的取值范圍是_________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆廣東汕頭金山中學(xué)高二上期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)已知函數(shù)的圖象與軸分別相交于點(diǎn),

分別是與軸正半軸同方向的單位向量),函數(shù).

(1)求的值;

(2)當(dāng)滿足時(shí),求函數(shù)的最小值.

 

查看答案和解析>>

同步練習(xí)冊答案