設(shè)M={ 平面內(nèi)的點(diǎn)(m,n)},N={f(x)|f(x)=mcos2x+nsin2x},給出M到N的映射f:(m,n)→f(x)=mcos2x+nsin2x,則點(diǎn)的像f(x)的最小正周期是( )
A.π
B.
C.2π
D.
【答案】分析:通過(guò)題目定義,求出像f(x)的表達(dá)式,利用三角函數(shù)的有關(guān)公式化簡(jiǎn)表達(dá)式為:一個(gè)角的三角函數(shù)的形式,然后求出它的周期即可.
解答:解:設(shè)M={ 平面內(nèi)的點(diǎn)(m,n)},N={f(x)|f(x)=mcos2x+nsin2x},給出M到N的映射f:(m,n)→f(x)=mcos2x+nsin2x,
點(diǎn)的像f(x)=2cos2x+sin2x=cos2x+sin2x+1=2sin(2x+)+1
所以函數(shù)的最小正周期是:
故選A
點(diǎn)評(píng):本題是基礎(chǔ)題,考查三角函數(shù)的最小正周期的求法,二倍角公式、兩角和的正弦函數(shù)的應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)M={ 平面內(nèi)的點(diǎn)(m,n)},N={f(x)|f(x)=mcos2x+nsin2x},給出M到N的映射f:(m,n)→f(x)=mcos2x+nsin2x,則點(diǎn)(2,  
3
)
的像f(x)的最小正周期是( 。
A、π
B、
π
2
C、2π
D、
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)M={平面內(nèi)的點(diǎn)(a,b)},N={f(x)|f(x)=acos2x+bsin2x},給出M到N的映射f:(a,b)→f(x)=acos2x+bsin2x,若點(diǎn)(1,
3
)
的像f(x)的圖象可以由曲線y=2sin2x按向量
m
平移得到,則向量
m
的坐標(biāo)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年甘肅省蘭州一中高考數(shù)學(xué)三模試卷(文科)(解析版) 題型:選擇題

設(shè)M={平面內(nèi)的點(diǎn)(a,b)},N={f(x)|f(x)=acos2x+bsin2x},給出M到N的映射f:(a,b)→f(x)=acos2x+bsin2x,若點(diǎn)的像f(x)的圖象可以由曲線y=2sin2x按向量平移得到,則向量的坐標(biāo)為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年甘肅省蘭州一中高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:選擇題

設(shè)M={平面內(nèi)的點(diǎn)(a,b)},N={f(x)|f(x)=acos2x+bsin2x},給出M到N的映射f:(a,b)→f(x)=acos2x+bsin2x,若點(diǎn)的像f(x)的圖象可以由曲線y=2sin2x按向量平移得到,則向量的坐標(biāo)為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江西省宜春市上高二中高三(下)第七次月考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

設(shè)M={ 平面內(nèi)的點(diǎn)(m,n)},N={f(x)|f(x)=mcos2x+nsin2x},給出M到N的映射f:(m,n)→f(x)=mcos2x+nsin2x,則點(diǎn)的像f(x)的最小正周期是( )
A.π
B.
C.2π
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案