精英家教網 > 高中數學 > 題目詳情
設函數y=f(x)是定義在R上的奇函數,且當x≥0時,f(x)=cosx+x+b(b為一常數)則f(-
π3
)
=
 
分析:由題意需要代入所給的解析式先求出f(
π
3
)
的值,再由奇函數的關系式求出f(-
π
3
)
的值.
解答:解:∵當x≥0時,f(x)=cosx+x+b,∴f(
π
3
)
=cos
π
3
+
π
3
+b=
1
2
+
π
3
+b
,
∵y=f(x)是定義在R上的奇函數,∴f(-
π
3
)
=-f(
π
3
)
=-
1
2
-
π
3
-b
,
故答案為:-
1
2
-
π
3
-b
點評:本題考查了利用函數奇偶性求函數的值,結合所給的函數解析式和奇函數的關系式進行求解,考查了分析和解決問題能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數y=f (x)是定義域為R的奇函數,且滿足f (x-2)=-f (x)對一切x∈R恒成立,當-1≤x≤1時,f (x)=x3,則下列四個命題:
①f(x)是以4為周期的周期函數.
②f(x)在[1,3]上的解析式為f (x)=(2-x)3
③f(x)在(
3
2
,f(
3
2
))
處的切線方程為3x+4y-5=0.
④f(x)的圖象的對稱軸中,有x=±1,其中正確的命題是( 。
A、①②③B、②③④
C、①③④D、①②③④

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數y=f(x)是定義在(0,+∞)上的函數,并且滿足下面三個條件:
①對正數x、y都有f(xy)=f(x)+f(y);
②當x>1時,f(x)<0;
③f(3)=-1
(I)求f(1)和f(
19
)
的值;
(II)如果不等式f(x)+f(2-x)<2成立,求x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數y=f(x)是定義在R上以1為周期的函數,若g(x)=f(x)-2x在區(qū)間[2,3]上的值域為[-2,6],則函數g(x)在[-12,12]上的值域為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數y=f(x)是定義在正實數上的增函數,且f(xy)=f(x)+f(y),
(1)求證:f(
xy
)=f(x)-f(y);
(2)若f(3)=1,f(a)>f(a-1)+2,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數y=f(x)是定義在R上的奇函數,且f(x-2)=-f(x)對一切x∈R都成立,又當x∈[-1,1]時,f(x)=x3,則下列五個命題:
①函數y=f(x)是以4為周期的周期函數;
②當x∈[1,3]時,f(x)=( x-2)3;
③直線x=±1是函數y=f(x)圖象的對稱軸;
④點(2,0)是函數y=f(x)圖象的對稱中心;
⑤函數y=f(x)在點(
3
2
,f(
3
2
))處的切線方程為3x-y-5=0.
其中正確的是
①③
①③
.(寫出所有正確命題的序號)

查看答案和解析>>

同步練習冊答案