滿足ln(2m+3)>ln(2m2的實(shí)數(shù)m的取值范圍是______.
【答案】分析:由題意可得 2m+3>22m,故有 m+3>2m,由此解得 m的范圍.
解答:解:∵ln(2m+3)>ln(2m2=ln22m,∴2m+3>22m,
∴m+3>2m,解得 m<3,
故答案為 (-∞,3).
點(diǎn)評:本題主要考查對數(shù)函數(shù)的單調(diào)性和特殊點(diǎn),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B、C是直線l上的三點(diǎn),O是直線l外一點(diǎn),向量
OA
OB
、
OC
滿足
OA
=[f(x)+2f′(1)]
OB
-ln(x+1)
OC

(Ⅰ)求函數(shù)y=f(x)的表達(dá)式;
(Ⅱ)若x>0,證明:f(x)>
2x
x+2
;
(Ⅲ)若不等式
1
2
x2≤f(x2)+m2-2m-3對x∈[-1,1]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

滿足ln(2m+3)>ln(2m2的實(shí)數(shù)m的取值范圍是
(-∞,3)
(-∞,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B、C是直線l上的三點(diǎn),O是直線l外一點(diǎn),向量滿足

=[f(x)+2f ′(1)] -ln(x+1)

(Ⅰ)求函數(shù)y=f(x)的表達(dá)式;

(Ⅱ)若x>0,證明:f(x)>;

(Ⅲ)若不等式x2f(x2)+m2-2m-3對x∈[-1,1]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

滿足ln(2m+3)>ln(2m2的實(shí)數(shù)m的取值范圍是________.

查看答案和解析>>

同步練習(xí)冊答案