分析 利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象的對稱性,求得m的最小值.
解答 解:把函數(shù)f(x)=cos2x-sin2x=$\sqrt{2}$cos(2x+$\frac{π}{4}$)象向左平移m(m>0)個單位,
可得y=$\sqrt{2}$cos(2x+2m+$\frac{π}{4}$)的圖象,
根據(jù)所得函數(shù)圖象關(guān)于原點對稱,可得2m+$\frac{π}{4}$=kπ+$\frac{π}{2}$,k∈Z,
即m=$\frac{kπ}{2}$+$\frac{π}{8}$,則m的最小值為$\frac{π}{8}$,
故答案為:$\frac{π}{8}$
點評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象的對稱性,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | -21007excosx | B. | -21007ex(cosx-sinx) | ||
C. | 21008exsinx | D. | 21008ex(sinx+cosx) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2$\sqrt{2}$ | C. | 2 | D. | 2或4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 向左平行移動$\frac{π}{3}$個單位長度 | B. | 向右平行移動$\frac{π}{3}$個單位長 | ||
C. | 向左平行移動$\frac{π}{9}$個單位長度 | D. | 向右平行移動$\frac{π}{9}$個單位長度 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com