分析 令f(x)=|2x-1|-|x-1|,零點(diǎn)分段去絕對值,求解f(x)的最小值,可得實(shí)數(shù)a的取值范圍.
解答 解:由題意,令f(x)=|2x-1|-|x-1|,有題意可知:$log_2^{\;}a≥f{(x)_{min}}$.
又∵$f(x)=\left\{{\begin{array}{l}{-x,x≤\frac{1}{2}}\\{3x-2,\frac{1}{2}<x<1}\\{x,x≥1}\end{array}}\right.$
∴$f{(x)_{min}}=-\frac{1}{2}$.
∴${log_2}a≥-\frac{1}{2}$
解得:$a≥\frac{{\sqrt{2}}}{2}$.
∴實(shí)數(shù)a的取值范圍是[$\frac{\sqrt{2}}{2}$,+∞).
點(diǎn)評 本題考查了含有絕對值的不等式的解法,零點(diǎn)分段去絕對值時解題的關(guān)鍵.屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\frac{5}{6}$ | C. | -$\frac{3}{4}$ | D. | $\frac{6}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{{\sqrt{15}}}{4}$ | B. | $\frac{{\sqrt{15}}}{4}$ | C. | $±\frac{{\sqrt{15}}}{4}$ | D. | $-\frac{{\sqrt{3}}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 20種 | B. | 15種 | C. | 10種 | D. | 4種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com