A. | [-2,2) | B. | [-1,2) | C. | (-2,-1] | D. | (-1,2] |
分析 由題意可得需使指數(shù)函數(shù)部分與x軸有一個交點,拋物線部分與x軸有兩個交點,由函數(shù)圖象的平移和二次函數(shù)的頂點可得關(guān)于a的不等式,解之可得答案.
解答 解:由題意可知:函數(shù)圖象的右半部分為單調(diào)遞減一次函數(shù)的部分,最多一個零點,
函數(shù)圖象的左半部分為開口向上的拋物線,對稱軸為x=-$\frac{3}{2}$,最多兩個零點,
如上圖,要滿足題意,必須指數(shù)函數(shù)的部分向下平移到與x軸相交,
由一次函數(shù)過點(2,0),二次函數(shù)的零點為:-2.-1,
函數(shù)f(x)=$\left\{\begin{array}{l}{2-x,x>a}\\{{x}^{2}+3x+2,x≤a}\end{array}\right.$恰有三個不同的零點,-1≤a<2,
故選:B.
點評 本題考查根的存在性及根的個數(shù)的判斷,數(shù)形結(jié)合是解決問題的關(guān)鍵,屬中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-2,0) | B. | (2,0) | C. | (0,-1) | D. | (0,1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{3}{4}$-$\frac{1}{e}$ | B. | -$\frac{3}{4}$-$\frac{1}{2e}$ | C. | -$\frac{4}{3}$-$\frac{1}{e}$ | D. | -$\frac{4}{3}$-$\frac{1}{2e}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com