分析 (1)根據(jù)AC為⊙O的半徑,可知:∠ABC=90°,由AD⊥BP,可知:∠ABC=∠ADB,根據(jù)切線(xiàn)的性質(zhì)知:∠ABD=∠ACB,從而可證:△ABC∽△ADB;
(2)在Rt△POA中,根據(jù)勾股定理可將OP的長(zhǎng)求出,利用等面積法,可將AB的長(zhǎng)求出.
解答 證明:(1)∵AC是圓O的直徑
∴∠ABC=90°
∵AD⊥BP
∴∠ADB=90°∴∠ABC=∠ADB
∵PB是圓的切線(xiàn)
∴∠ABD=∠ACB
在△ABC和△ADB中:
∵∠ABC=∠ADB,∠ABD=∠ACB
∴△ABC∽△ADB.
(2)連接OP,因?yàn)镻A是圓O的切線(xiàn),所以,OA⊥AP,在Rt△AOP中,AP=2$\sqrt{3}$,OA=2,
∴OP=4
由已知可得OP⊥AB,等面積法可得:$\frac{1}{2}AP•OA=\frac{1}{2}×\frac{1}{2}AB×OP$,∴AB=2$\sqrt{3}$.
點(diǎn)評(píng) 本題主要考查相似三角形的判定及切線(xiàn)性質(zhì)的應(yīng)用.本小題主要考查函數(shù)單調(diào)性的應(yīng)用、函數(shù)奇偶性的應(yīng)用、不等式的解法等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [$\frac{2}{3}$,1] | B. | [$\frac{2}{3}$,+∞) | C. | [1,+∞) | D. | [0,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 最小正周期為π | |
B. | 圖象可由$y=\frac{1}{2}sinx$先把圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的$\frac{1}{2}$倍(縱坐標(biāo)不變),再把所得圖象向左平移$\frac{π}{8}$個(gè)單位長(zhǎng)度而得到 | |
C. | 圖象關(guān)于直線(xiàn)x=$\frac{5π}{8}$對(duì)稱(chēng) | |
D. | 圖象關(guān)于點(diǎn)($\frac{π}{8}$,0)對(duì)稱(chēng) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 直線(xiàn)$θ=\frac{π}{6}$對(duì)稱(chēng) | B. | 直線(xiàn)θ=$\frac{5}{6}$π對(duì)稱(chēng) | C. | 點(diǎn)$(2,\frac{π}{3})$中心對(duì)稱(chēng) | D. | 極點(diǎn)中心對(duì)稱(chēng) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2$\sqrt{2}$ | D. | $2\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 60 | B. | 48 | C. | 42 | D. | 36 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com