在平面直角坐標系xOy中,已知橢圓C1=1(a>b>0)的左焦點為F1(-1,0),且點P(0,1)在C1上.
(1)求橢圓C1的方程;
(2)設直線l同時與橢圓C1和拋物線C2:y2=4x相切,求直線l的方程.

(1)+y2=1; (2)y=x+或y=-x-.

解析試題分析:(1)由于橢圓的方程是標準方程,知其中心在坐標原點,對稱軸就是兩坐標軸,所以由已知可直接得到半焦距c及短半軸b的值,然后由 求得的值,進而就可寫出橢圓的方程;(2)由已知得,直線l的斜率顯然存在且不等于0,故可設直線l的方程為y=kx+m,然后聯(lián)立直線方程與橢圓C1的方程,消去y得到關(guān)于x的一個一元二次方程,由直線l同時與橢圓C1相切知,其判別式等于零得到一個關(guān)于k,m的方程;再聯(lián)立直線l與拋物線C2的方程,消去y得到關(guān)于x的一個一元二次方程,由直線l同時與拋物線C2相切知,其判別式又等于零,再得到一個關(guān)于k,m的方程;和前一個方程聯(lián)立就可求出k,m的值,從而求得直線l的方程.
試題解析:(1)因為橢圓C1的左焦點為F1(-1,0),
所以c=1.將點P(0,1)代入橢圓方程=1,
=1,即b=1. 所以a2=b2+c2=2.
所以橢圓C1的方程為+y2=1.
(2)由題意可知,直線l的斜率顯然存在且不等于0,設直線l的方程為y=kx+m,由消去y并整理得(1+2k2)x2+4kmx+2m2-2=0.
因為直線l與橢圓C1相切,
所以Δ1=16k2m2-4(1+2k2)(2m2-2)=0.
整理,得2k2-m2+1=0,                                   ①
消y,得
k2x2+(2km-4)x+m2=0.
∵直線l與拋物線C2相切,
∴Δ2=(2km-4)2-4k2m2=0,整理,得km=1,                    ②
聯(lián)立①、②,得
∴l(xiāng)的方程為y=x+或y=-x-.
考點:1.橢圓的方程;2.直線與圓錐曲線的位置關(guān)系.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

若方程表示雙曲線,則的取值范圍是         

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓和點
(1)求橢圓的方程;
(2)設過點的直線與橢圓交于兩點,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

定義:我們把橢圓的焦距與長軸的長度之比即,叫做橢圓的離心率.若兩個橢圓的離心率相同,稱這兩個橢圓相似.
(1)判斷橢圓與橢圓是否相似?并說明理由;
(2)若橢圓與橢圓相似,求的值;
(3)設動直線與(2)中的橢圓交于兩點,試探究:在橢圓上是否存在異于的定點,使得直線的斜率之積為定值?若存在,求出定點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓G:經(jīng)過橢圓的右焦點F及上頂點B,過橢圓外一點(m,0)()傾斜角為的直線L交橢圓與C、D兩點.
(1)求橢圓的方程;
(2)若右焦點F在以線段CD為直徑的圓E的內(nèi)部,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

橢圓的離心率為,其左焦點到點的距離為
(1) 求橢圓的標準方程;
(2) 若直線與橢圓相交于兩點(不是左右頂點),且以為直徑的圓過橢圓的右頂點,求證:直線過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,已知拋物線,在此拋物線上一點到焦點的距離是3.
(1)求此拋物線的方程;
(2)拋物線的準線與軸交于點,過點斜率為的直線與拋物線交于、兩點.是否存在這樣的,使得拋物線上總存在點滿足,若存在,求的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓過點,且離心率為.斜率為的直線與橢圓交于兩點,以為底邊作等腰三角形,頂點為.
(1)求橢圓的方程;
(2)求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

橢圓的離心率為,若直線與其一個交點的橫坐標為,則的值為                

查看答案和解析>>

同步練習冊答案