如圖,已知PA⊥平面ABC,且PA=,等腰直角三角形ABC中,AB=BC=1,AB⊥BC,AD⊥PB于D,AE⊥PC于E.

(1)求證:PC⊥平面ADE;

(2)求點(diǎn)D到平面ABC的距離.

答案:
解析:

  解:(1)證明:因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.1010pic.com/pic7/pages/60A2/5611/0021/4e7b580d29f0715f7d717fadd83ede0f/C/Image73.gif" width=106 height=21>,

  所以,又,且

  所以,從而.3分

  又,所以,得,

  又,所以.6分

  (2)過(guò)D點(diǎn)作垂直為E,由題意知DF面ABC,

  即DF為所求距離.8分

  由題設(shè)得DF‖PA,所以,即DF=,

  又即BD=,

  DE=.11分

  即點(diǎn)D到平面ABC的距離為.12分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•丹東模擬)如圖,已知PA⊥平面ABCD,ABCD是矩形,PA=AB=1,AD=
3
,F(xiàn)是PB中點(diǎn),點(diǎn)E在BC邊上.
(Ⅰ)求三棱錐E-PAD的體積;
(Ⅱ)求證:AF⊥PE;
(Ⅲ)若EF∥平面PAC,試確定E點(diǎn)的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•寶雞模擬)如圖,已知PA⊥平面ABC,且PA=
2
,等腰直角三角形ABC中,AB=BC=1,AB⊥BC,AD⊥PB于D,AE⊥PC于E.
(1)求證:PC⊥平面ADE;
(2)求點(diǎn)D到平面ABC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•寶雞模擬)如圖,已知PA⊥平面ABC,且PA=
2
,等腰直角三角形ABC中,AB=BC=1,AB⊥BC,AD⊥PB于D,AE⊥PC于E.
(1)求證:PC⊥平面ADE;
(2)求直線AB與平面ADE所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•徐匯區(qū)一模)如圖,已知PA⊥平面ABC,AC⊥AB,AP=BC=2,∠CBA=30°,D,E分別是BC,AP的中點(diǎn).
(1)求異面直線AC與ED所成的角的大。
(2)求△PDE繞直線PA旋轉(zhuǎn)一周所構(gòu)成的旋轉(zhuǎn)體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•徐匯區(qū)一模)如圖,已知PA⊥平面ABC,AC⊥AB,AP=BC=2,∠CBA=30°,D是AB的中點(diǎn).
(1)求PD與平面PAC所成的角的大小;
(2)求△PDB繞直線PA旋轉(zhuǎn)一周所構(gòu)成的旋轉(zhuǎn)體的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案