已知數(shù)列滿足:且對(duì)任意的有.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)是否存在等差數(shù)列,使得對(duì)任意的有成立?證明你的結(jié)論
(Ⅰ)
(Ⅱ),即
(Ⅰ)解:∵
∴
∴數(shù)列是首項(xiàng)為(),公比為2的等比數(shù)列,………………4分
,
,∴數(shù)列是首項(xiàng)為1,公差為1的等差數(shù)列
,∴… …………………7分
(Ⅱ)令代入得:
解得:
由此可猜想,即 …………………10分
下面用數(shù)學(xué)歸納法證明:
(1)當(dāng)n=1時(shí),等式左邊=1,右邊=,
當(dāng)n=1時(shí),等式成立,
(2)假設(shè)當(dāng)n=k時(shí),等式成立,即
當(dāng)n=k+1時(shí)
∴當(dāng)n=k+1時(shí),等式成立,
綜上所述,存在等差數(shù)列,使得對(duì)任意的有成立。 …………………14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知數(shù)列滿足:且對(duì)任意的有.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)是否存在等差數(shù)列,使得對(duì)任意的有成立?證明你的結(jié)論
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年西藏拉薩中學(xué)高三第5次月考數(shù)學(xué)理卷 題型:解答題
(14分)已知數(shù)列滿足,且對(duì)任意的都有
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011屆山東省下學(xué)期高三月考理科數(shù)學(xué) 題型:填空題
已知數(shù)列滿足,且對(duì)任意的正整數(shù)都有,若數(shù)列的前項(xiàng)和為,則=
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com