已知等差數(shù)列{}的公差,,且,,成等比數(shù)列.
(1)求數(shù)列{}的公差及通項;
(2)求數(shù)列的前項和.
(1)=n;(2)2n+1-2.
解析試題分析:(1)由,,,成等比數(shù)列得:=解得d=1,d=0(舍去),即可求出通項公式;
(2)由(1)知=,由等比數(shù)列前n項和公式可求出結(jié)果.
試題解析:解:(1)由題設知公差d≠0,
由,,,成等比數(shù)列得:=, 3分
解得d=1,d=0(舍去) 4分
故{}的通項=1+(n-1)×1=n. 6分
(2)由(1)知=, 8分
由等比數(shù)列前n項和公式得Sm=2+22+23+ +2n= 11分
=2n+1-2. 12分
考點:1.等差數(shù)列和等比數(shù)列的性質(zhì);2.等比數(shù)列的前n項活動.
科目:高中數(shù)學 來源: 題型:解答題
(2013·安徽高考)設數(shù)列{an}滿足a1=2,a2+a4=8,且對任意n∈N*,函數(shù)f(x)=x+an+1cos x-an+2sin x滿足f′=0.
(1)求數(shù)列{an}的通項公式;
(2)若bn=2,求數(shù)列{bn}的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
一個三角形數(shù)表按如下方式構(gòu)成(如圖:其中項數(shù)):第一行是以4為首項,4為公差的等差數(shù)列,從第二行起,每一個數(shù)是其肩上兩個數(shù)的和,例如:;為數(shù)表中第行的第個數(shù).
求第2行和第3行的通項公式和;
證明:數(shù)表中除最后2行外每一行的數(shù)都依次成等差數(shù)列,并求關于()的表達式;
(3)若,,試求一個等比數(shù)列,使得,且對于任意的,均存在實數(shù)?,當時,都有.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列滿足(為常數(shù),)
(1)當時,求;
(2)當時,求的值;
(3)問:使恒成立的常數(shù)是否存在?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知公差不為零的等差數(shù)列,等比數(shù)列,滿足,,.
(1)求數(shù)列、的通項公式;
(2)若,求數(shù)列{}的前n項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列中,,對任意的,、、成等比數(shù)列,公比為;、、成等差數(shù)列,公差為,且.
(1)寫出數(shù)列的前四項;
(2)設,求數(shù)列的通項公式;
(3)求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
若的圖像與直線相切,并且切點橫坐標依次成公差為的等差數(shù)列.
(1)求和的值;
(2)ABC中a、b、c分別是∠A、∠B、∠C的對邊.若是函數(shù)圖象的一個對稱中心,且a=4,求ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知為公差不為零的等差數(shù)列,首項,的部分項、、恰為等比數(shù)列,且,,.
(1)求數(shù)列的通項公式(用表示);
(2)若數(shù)列的前項和為,求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com