函數(shù)f(x)=
1
3
x3
+3x-2的零點(diǎn)個(gè)數(shù)為( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)
∵f(x)=
1
3
x3
+3x-2
則f'(x)=x2+3>0
則f(x)=
1
3
x3
+3x-2為定義在R上的增函數(shù),
當(dāng)x=0時(shí),f(0)=-2;當(dāng)x=1時(shí),f(1)=
4
3

故函數(shù)f(x)=
1
3
x3
+3x-2有且僅有一個(gè)零點(diǎn).
故答案為 B
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
1
3
x-lnx(x>0),則y=f(x)( 。
A、在區(qū)間(
1
e
,1),(l,e)內(nèi)均有零點(diǎn)
B、在區(qū)間(
1
e
,1),(l,e)內(nèi)均無(wú)零點(diǎn)
C、在區(qū)間(
1
e
,1)內(nèi)無(wú)零點(diǎn),在區(qū)間(l,e)內(nèi)有零點(diǎn)
D、在區(qū)間(
1
e
,1)內(nèi)有零點(diǎn),在區(qū)間(l,e)內(nèi)無(wú)零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3x+
3
,
(1)f(0)+f(1),f(-1)+f(2),f(-2)+f(3)的值;
(2)歸納猜想一般性的結(jié)論,并證明之.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
1
3
x-lnx,則y=f(x)
 
.(填寫(xiě)正確命題的序號(hào))
①在區(qū)間(
1
e
,1),(1,e)內(nèi)均有零點(diǎn); ②在區(qū)間(
1
e
,1)內(nèi)有零點(diǎn),在區(qū)間(1,e)內(nèi)無(wú)零點(diǎn);
③在區(qū)間(
1
e
,1),(1,e)內(nèi)均無(wú)零點(diǎn); ④在區(qū)間(
1
e
,1)內(nèi)無(wú)零點(diǎn),在區(qū)間(1,e)內(nèi)有零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x       (x<1)
(x-5)2-3  (x≥1)
,則f(3-
1
2
)-f(5+3-
3
4
 
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
13x-1
+a (x≠0),則“f(1)=1”是“函數(shù)f(x)為奇函數(shù)”的
 
條件(用“充分不必要”,“必要不充分”“充要”“既非充分又非必要”填寫(xiě))

查看答案和解析>>

同步練習(xí)冊(cè)答案