【題目】如圖,在四棱錐中,底面是邊長為的菱形, , 平面, , 是棱上的一個(gè)點(diǎn), , 的中點(diǎn).

(1)證明: 平面;

(2)求直線與平面所成角的正弦值.

【答案】(1)見解析(2)

【解析】試題分析:(1連接,取的中點(diǎn),所以,所以平面, 平面,所以平面平面,所以平面;(2)建立空間直角坐標(biāo)系,求出平面的法向量,求得線面夾角的正弦值。

試題解析:

(1)證明:連接,設(shè),取的中點(diǎn),連接,

中,因?yàn)?/span>分別為的中點(diǎn),所以

平面,所以平面

同理,在中, 平面,

因?yàn)?/span>平面,所以平面.

(2)以為坐標(biāo)原點(diǎn),分別以所在的直線為軸,建立如圖所示的空間直角坐標(biāo)系

在等邊三角形中,因?yàn)?/span>,所以,

因此,

,

設(shè)平面的一個(gè)法向量為

,取,得,

直線與平面所成的角為,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著互聯(lián)網(wǎng)的發(fā)展,移動(dòng)支付又稱手機(jī)支付逐漸深入人民群眾的生活某學(xué)校興趣小組為了了解移動(dòng)支付在人民群眾中的熟知度,對(duì)歲的人群隨機(jī)抽樣調(diào)查,調(diào)查的問題是你會(huì)使用移動(dòng)支付嗎?其中,回答會(huì)的共有50個(gè)人,把這50個(gè)人按照年齡分成5組,并繪制出頻率分布表部分?jǐn)?shù)據(jù)模糊不清如表:

分組

頻數(shù)

頻率

1

10

2

3

15

4

5

2

合計(jì)

50

表中處的數(shù)據(jù)分別是多少?

從第1組,第3組,第4組中用分層抽樣的方法抽取6人,求每組抽取的人數(shù).

抽取的6人中再隨機(jī)抽取2人,求所抽取的2人來自同一個(gè)組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】網(wǎng)格紙的各小格都是邊長為1的正方形,圖中粗實(shí)線畫出的是一個(gè)幾何體的三視圖,其中正視圖是正三角形,則該幾何體的外接球表面積為( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)正整數(shù),若它的每個(gè)質(zhì)因數(shù)都至少是兩重的(即每個(gè)質(zhì)因數(shù)乘方次數(shù)都不小于2),則稱該正整數(shù)為“漂亮數(shù)”.相鄰兩個(gè)正整數(shù)皆為“漂亮數(shù)”,就稱它們是一對(duì)“孿生漂亮數(shù)”.例如89就是一對(duì)“孿生漂亮數(shù)”.請你再找出兩對(duì)“孿生漂亮數(shù)”來.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|x+1|+|x﹣3|
(1)求函數(shù)f(x)的最小值;
(2)若{x|f(x)≤t2﹣3t}∩{x|﹣2≤x≤0}≠.求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐, 平面, , , .

求證:平面平面

求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P-ABCD的底面為平行四邊形,MPC中點(diǎn).

(1)求證:BA平面PCD;

(2)求證:AP平面MBD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,離心率為的橢圓的左頂點(diǎn)為,過原點(diǎn)的直線(與坐標(biāo)軸不重合)與橢圓交于兩點(diǎn),直線分別與軸交于, 兩點(diǎn).若直線斜率為 時(shí), .

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)試問以為直徑的圓是否經(jīng)過定點(diǎn)(與直線的斜率無關(guān))?請證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)滿足,則稱函數(shù)為“函數(shù)”.

試判斷是否為“函數(shù)”,并說明理由;

函數(shù)為“函數(shù)”,且當(dāng)時(shí),,求的解析式,并寫出在上的單調(diào)遞增區(qū)間;

條件下,當(dāng)時(shí),關(guān)于的方程為常數(shù)有解,記該方程所有解的和為,求

查看答案和解析>>

同步練習(xí)冊答案