3.要得到函數(shù)y=sin2x的圖象,只需將函數(shù)y=cos(2x-$\frac{π}{3}$)的圖象向右(左、右)平移$\frac{π}{12}$個單位長度.

分析 根據(jù)三角函數(shù)的誘導公式以及三角函數(shù)圖象之間的關系即可得到結論.

解答 解:y=cos(2x-$\frac{π}{3}$)=sin(2x-$\frac{π}{3}$+$\frac{π}{2}$)=sin(2x+$\frac{π}{6}$)=sin2(x+$\frac{π}{12}$),
則要得到函數(shù)y=sin2x的圖象,只需將函數(shù)y=sin2(x+$\frac{π}{12}$)的圖象向右平移$\frac{π}{12}$個單位即可.
故答案為:右;$\frac{π}{12}$.

點評 本題主要考查三角函數(shù)的圖象關系,利用誘導公式是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

13.已知函數(shù)$f(x)=\left\{\begin{array}{l}(a-1)x+3a-4,x≤0\\{a^x},x>0\end{array}\right.$對于任意的x1,x2∈R,都滿足條件$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}>0({x_1}≠{x_2})$成立,則a的取值范圍是$1<a≤\frac{5}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知集合A={x|x-1≥0},B={x|x2-x-2≤0},則A∩B=(  )
A.{x|0≤x≤2}B.{x|1≤x≤2}C.{1,2}D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.“sinα=cosα”是“sin2α=1”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.當a為任意實數(shù)時,直線ax-y+1-3a=0恒過定點(3,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知f(x)=xlnx,g(x)=x3+ax2+x.
(Ⅰ)討論函數(shù)g(x)的極值點的個數(shù);
(Ⅱ)若不等式2f(x)≤g′(x)在x∈(0,+∞)上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.若定義在R上的單調(diào)減函數(shù)f(x)滿足:f(a-2sinx)≤f(cos2x)對一切實數(shù)x∈R恒成立,則實數(shù)a的取值范圍是${\;}_{\;}^{\;}a≥2{\;}_{\;}^{\;}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知函數(shù)f(x)=-x3-x+sinx,當$θ∈(0,\frac{π}{2})$時,恒有f(cos2θ+2msinθ)+f(-2m-2)>0成立,則實數(shù)m的取值范圍是[-$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.在平面直角坐標系中,O為坐標原點,|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|=|$\overrightarrow{OD}$|=1,$\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}$=$\overrightarrow 0$,A(1,1),則$\overrightarrow{AD}•\overrightarrow{OB}$的取值范圍為[-$\frac{1}{2}$-$\sqrt{2}$,-$\frac{1}{2}+\sqrt{2}$].

查看答案和解析>>

同步練習冊答案