對(duì)于函數(shù)f(x)=,

(1)求函數(shù)f(x)的定義域、值域;

(2)確定函數(shù)f(x)的單調(diào)區(qū)間.

答案:
解析:

  解:函數(shù)f(x)=可以看成是由函數(shù)u=x2-2x-1與函數(shù)y=()u復(fù)合而成.

  (1)由u=x2-2x-1=(x-1)2-2,當(dāng)x∈R時(shí),u≥-2,此時(shí)函數(shù)y=()u總有意義,所以函數(shù)f(x)定義域?yàn)?B>R;

  又由u≥-2,所以0<()u≤9,所以原函數(shù)的值域?yàn)?0,9].

  (2)因?yàn)楹瘮?shù)u=x2-2x-1在[1,+∞)上遞增,所以對(duì)于任意的1≤x1<x2都有u1<u2,所以有,即y1>y2

  所以函數(shù)f(x)=在[1,+∞)上遞減.

  同理可得函數(shù)f(x)=在(-∞,1]上遞增.

  點(diǎn)評(píng):形如y=af(x)(a>0,a≠1)的函數(shù)有如下性質(zhì):

  (1)定義域與函數(shù)f(x)定義域相同;

  (2)先確定函數(shù)u=f(x)的值域,然后以u(píng)的值域作為函數(shù)y=au(a>0,a≠1)的定義域求得函數(shù)y=af(x)(a>0,a≠1)的值域;

  (3)函數(shù)y=af(x)(a>0,a≠1)的單調(diào)性,可以由函數(shù)u=f(x)與y=au(a>0,a≠1)按照“同增異減”即“單調(diào)性相同為增函數(shù),單調(diào)性相異為減函數(shù)”的原則來確定.

  (4)從本題中的解答過程,可以體會(huì)到換元法在解決復(fù)合函數(shù)問題時(shí)的作用.


提示:

這是一個(gè)復(fù)合函數(shù)的問題,因此,可以將函數(shù)分解成為我們熟悉的函數(shù)如二次函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)等,利用這些熟悉的函數(shù)相應(yīng)的性質(zhì)來解決問題.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:浙江省臺(tái)州市四校2012屆高三第一次聯(lián)考數(shù)學(xué)文科試題 題型:044

對(duì)于函數(shù)f(x)=-x4x3+ax2-2x-2,其中a為實(shí)常數(shù),已知函數(shù)

yf(x)的圖象在點(diǎn)(-1,f(-1))處的切線與y軸垂直.

(Ⅰ)求實(shí)數(shù)a的值;

(Ⅱ)若關(guān)于x的方程f(3x)=m有三個(gè)不等實(shí)根,求實(shí)數(shù)m的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“我們稱使f(x)=0的x為函數(shù)yf(x)的零點(diǎn).若函數(shù)yf(x)在區(qū)間[ab]上是連續(xù)的、單調(diào)的函數(shù),且滿足f(af(b)<0,則函數(shù)yf(x)在區(qū)間[a,b]上有唯一的零點(diǎn)”.對(duì)于函數(shù)f(x)=6ln(x+1)-x2+2x-1.

(1)討論函數(shù)f(x)在其定義域內(nèi)的單調(diào)性,并求出函數(shù)極值;

(2)證明連續(xù)函數(shù)f(x)在[2,+∞)內(nèi)只有一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省高三第四次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

本小題滿分12分)  對(duì)于函數(shù)f(x)=(asin x+cos x)cos x-,已知f()=1.

(1)求a的值; 

(2)作出函數(shù)f(x)在x∈[0,π]上的圖像(不要求書寫作圖過程).

(3)根據(jù)畫出的圖象寫出函數(shù)上的單調(diào)區(qū)間和最值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年人教A版高中數(shù)學(xué)必修一3.1函數(shù)與方程練習(xí)卷(一)(解析版) 題型:填空題

下列說法正確的有________:

①對(duì)于函數(shù)f(x)=x2+mx+n,若f(a)>0,f(b)>0,則函數(shù)f(x)在區(qū)間(a,b)內(nèi)一定沒有零點(diǎn).

②函數(shù)f(x)=2x-x2有兩個(gè)零點(diǎn).

③若奇函數(shù)、偶函數(shù)有零點(diǎn),其和為0.

④當(dāng)a=1時(shí),函數(shù)f(x)=|x2-2x|-a有三個(gè)零點(diǎn).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省高三第四次質(zhì)量檢測(cè)文科數(shù)學(xué)試卷 題型:填空題

對(duì)于函數(shù)f(x)=2cos2x+2sinxcosx-1(x∈R)給出下列命題:①f(x)的最小正周期為2π;②f(x)在區(qū)間[,]上是減函數(shù);③直線x=是f(x)的圖像的一條對(duì)稱軸;④f(x)的圖像可以由函數(shù)y=sin2x的圖像向左平移而得到.其中正確命題的序號(hào)是________(把你認(rèn)為正確的都填上)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案