已知函數(shù)
(1)求證:不論a為何實數(shù)f(x)總是為增函數(shù);
(2)確定a的值,使f(x)為奇函數(shù);
(3)當(dāng)f(x)為奇函數(shù)時,求f(x)的值域.
【答案】分析:(1)先設(shè)x1<x2,欲證明不論a為何實數(shù)f(x)總是為增函數(shù),只須證明:f(x1)-f(x2)<0,即可;
(2)根據(jù)f(x)為奇函數(shù),利用定義得出f(-x)=-f(x),從而求得a值即可;
(3)由(2)知(4),利用指數(shù)函數(shù)2x的性質(zhì)結(jié)合不等式的性質(zhì)即可求得f(x)的值域.
解答:解:(1)∵f(x)的定義域為R,設(shè)x1<x2,
=
∵x1<x2,∴,∴f(x1)-f(x2)<0,
即f(x1)<f(x2),所以不論a為何實數(shù)f(x)總為增函數(shù).
(2)∵f(x)為奇函數(shù),∴f(-x)=-f(x),即,
解得:.∴
(3)由(2)知(4),∵2x+1>1(5),∴(6),∴,∴
所以f(x)的值域為
點(diǎn)評:本小題主要考查函數(shù)單調(diào)性的應(yīng)用、函數(shù)奇偶性的應(yīng)用、不等式的解法等基礎(chǔ)知識,考查運(yùn)算求解能力與化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年安徽省合肥市高三第一次教學(xué)質(zhì)量檢測文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

1求證:時,恒成立;

2當(dāng)時,求的單調(diào)區(qū)間

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆云南省高二下學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

(1)求證:

(2)解不等式

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年寧夏高三第五次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分l0分)選修4—5:不等式選講

已知函數(shù)

(1)求證:;

(2)解不等式.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西吉安寧岡中學(xué)高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

(1)求證函數(shù)在區(qū)間上存在唯一的極值點(diǎn),并用二分法求函數(shù)取得極值時相應(yīng)的近似值(誤差不超過);(參考數(shù)據(jù),,

(2)當(dāng)時,若關(guān)于的不等式恒成立,試求實數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江西省鷹潭市高三第二次模擬考試?yán)砜茢?shù)學(xué)卷 題型:解答題

已知函數(shù)

(1)求證函數(shù)在區(qū)間上存在唯一的極值點(diǎn),并用二分法求函數(shù)取得極值時相應(yīng)的近似值(誤差不超過);(參考數(shù)據(jù),,

(2)當(dāng)時,若關(guān)于的不等式恒成立,試求實數(shù)的取值范圍.

 

 

查看答案和解析>>

同步練習(xí)冊答案