【題目】設數(shù)列{an}的前n和為Sn , a1=1,Sn=nan﹣2n2+2n(n∈N*).
(1)求證:數(shù)列{an}為等差數(shù)列,并分別寫出an和Sn關于n的表達式;
(2)是否存在自然數(shù)n,使得S1+ + +…+ +2n=1124?若存在,求出n的值; 若不存在,請說明理由;
(3)設cn= (n∈N*),Tn=c1+c2+c3+…+cn(n∈N*),若不等式Tn (m∈Z),對n∈N*恒成立,求m的最大值.

【答案】
(1)證明:由 ,得 ,

相減得an=nan﹣(n﹣1)an1﹣4n+4(n﹣1)an﹣(n﹣1)an1=4(n﹣1)an﹣an1=4(n≥2).

故數(shù)列{an}是首項為1,公差為4的等差數(shù)列.∴an=1+4(n﹣1)=4n﹣3.Sn= =2n2﹣n.


(2)解:由(1)可得: =2n﹣1.

,

由n2+2n=1124,得n=10,即存在滿足條件的自然數(shù)n=10


(3)解: =

,

∴Tn<Tn+1,即Tn單調遞增,故 要使 恒成立,只需 成立,即m<8(m∈Z).

故符合條件m的最大值為7


【解析】(1)由 ,利用遞推關系an= 可得an﹣an1=4(n≥2).利用等差數(shù)列的通項公式與求和公式即可得出:an , Sn . (2)由(1)可得: =2n﹣1.利用等差數(shù)列的求和公式即可得出.(3)利用“裂項求和方法”、數(shù)列的單調性即可得出.
【考點精析】掌握數(shù)列的前n項和和數(shù)列的通項公式是解答本題的根本,需要知道數(shù)列{an}的前n項和sn與通項an的關系;如果數(shù)列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】G為△ADE的重心,點P為△DEG內部(含邊界)上任一點,B,C均為AD,AE上的三等分點(靠近點A), (α,β∈R),則α+ β的范圍是(
A.[1,2]
B.[1, ]
C.[ ,2]
D.[ ,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 且函數(shù)y=f(x)﹣x恰有3個不同的零點,則實數(shù)a的取值范圍是(
A.(0,+∞)
B.[﹣1,0)
C.[﹣1,+∞)
D.[﹣2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=2x﹣1.
(1)求f(3)+f(﹣1);
(2)求f(x)在R上的解析式;
(3)求不等式﹣7≤f(x)≤3的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=|x﹣2|+|x+1|+2|x+2|.
(1)求證:f(x)≥5;
(2)若對任意實數(shù)x,15﹣2f(x)<a2+ 都成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax3+ x2在x=﹣1處取得極大值,記g(x)= .程序框圖如圖所示,若輸出的結果S> ,則判斷框中可以填入的關于n的判斷條件是(

A.n≤2014?
B.n≤2015?
C.n>2014?
D.n>2015?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=cos(2x﹣ )﹣cos2x. (Ⅰ)求f( )的值;
(Ⅱ)求函數(shù)f(x)的最小正周期和單調遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】等腰△ABC中,底邊BC=2 ,| ﹣t |的最小值為 | |,則△ABC的面積為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列關于命題的說法錯誤的是(
A.命題“若x2﹣3x+2=0,則x=1”的逆否命題為“若x≠1,則x2﹣3x+2≠0”
B.“a=2”是“函數(shù)f(x)=logax在區(qū)間(0,+∞)上為增函數(shù)”的充分不必要條件
C.若命題P:n∈N,2n>1000,則﹣P:n∈N,2n≤1000
D.命題“x∈(﹣∞,0),2x<3x”是真命題

查看答案和解析>>

同步練習冊答案