如圖,已知PA⊥矩形ABCD所在平面,M,N分別是AB,PC的中點.

(1)求證:MN⊥CD;

(2)若∠PDA=45°,求證:MN⊥平面PCD.

答案:
解析:

  證明:(1)連AC∩BD=O,連NO,MO,則NO∥PA.

  ∵PA⊥平面ABCD,∴NO⊥平面ABCD.

  ∵MO⊥AB,∴MN⊥AB,而CD∥AB,∴MN⊥CD;

  (2)∵∠PDA=45°,∴PA=AD,

  由△PAM≌△CBM得PM=CM,

  ∵N為PC中點,∴MN⊥PC.

  又MN⊥CD,PC∩CD=C,∴MN⊥平面PCD.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知PA⊥矩形ABCD所在平面,M、N分別為AB、PC的中點;
(Ⅰ)求證:MN∥平面PAD;
(Ⅱ)求證:MN⊥CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知PA⊥矩形ABCD所在的平面,M、N分別是AB,PC的中點;若P-CD-A為45°的二面角,求證:平面MND⊥平面PDC;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知PA⊥矩形ABCD所在平面,M、N分別是AB、PC的中點.
(1)求證:MN⊥CD;
(2)若∠PDA=45°,求證:MN⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省吉安市安福中學(xué)高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,已知PA⊥矩形ABCD所在平面,M、N分別為AB、PC的中點;
(Ⅰ)求證:MN∥平面PAD;
(Ⅱ)求證:MN⊥CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省吉安市安福中學(xué)高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,已知PA⊥矩形ABCD所在平面,M、N分別為AB、PC的中點;
(Ⅰ)求證:MN∥平面PAD;
(Ⅱ)求證:MN⊥CD.

查看答案和解析>>

同步練習(xí)冊答案