對(duì)于數(shù)列{λn},若存在常數(shù)M>0,對(duì)任意n∈N+,恒有|λn+1-λn|+|λn-λn-1|+…+|λ2-λ1≤M|,則稱(chēng)數(shù)列{λn}為數(shù)列.

求證:(1)設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,若{Sn}是數(shù)列,則{an}也是數(shù)列.

(2)若數(shù)列{an},{bn}都是數(shù)列,則{anbn}也是數(shù)列.

答案:
解析:

  證明:(1)∵{Sn}為數(shù)列,∴存在M>0,使

  

  ∴,又

  .∴{an}也是數(shù)列.

  (2)∵數(shù)列{an}{bn}都是數(shù)列,∴存在M,使得:

  

  對(duì)任意都成立.

  考慮

  

  

  ∴

  同理,

  ∴

  ∴{anbn}也是數(shù)列.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于數(shù)列{λn},若存在常數(shù)M>0,對(duì)任意n∈N+,恒有|λn+1n|+|λnn-1|+…+|λ21|≤M,則稱(chēng)數(shù)列{λn}為∂-數(shù)列.
求證:
(1)設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,若{Sn}是∂-數(shù)列,則{an}也是∂-數(shù)列.
(2)若數(shù)列{an},{bn}都是∂-數(shù)列,則{anbn}也是∂-數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:江蘇省揚(yáng)州中學(xué)2012屆高三上學(xué)期12月練習(xí)數(shù)學(xué)試題 題型:047

對(duì)于數(shù)列{λn},若存在常數(shù)M>0,對(duì)任意n∈N+,恒有|λn+1-λn|+|λn-λn-1|+…+|λ2-λ1|≤M,則稱(chēng)數(shù)列{λn}為數(shù)列.

求證:(1)設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,若{Sn}是數(shù)列,則{an}也是數(shù)列.

(2)若數(shù)列{an},{bn}都是數(shù)列,則{anbn}也是數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:江蘇期末題 題型:解答題

對(duì)于數(shù)列{n},若存在常數(shù)M>0,對(duì)任意n∈N+,恒有|n+1n|+|nn﹣1|+…
+|21|≤M,則稱(chēng)數(shù)列{n}為﹣數(shù)列.
求證:(1)設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,若{Sn}是﹣數(shù)列,則{an}也是﹣數(shù)列.
(2)若數(shù)列{an},{bn}都是﹣數(shù)列,則{anbn}也是﹣數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省揚(yáng)州中學(xué)高三(上)12月月考數(shù)學(xué)試卷(解析版) 題型:解答題

對(duì)于數(shù)列{λn},若存在常數(shù)M>0,對(duì)任意n∈N+,恒有|λn+1n|+|λnn-1|+…+|λ21|≤M,則稱(chēng)數(shù)列{λn}為∂-數(shù)列.
求證:
(1)設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,若{Sn}是∂-數(shù)列,則{an}也是∂-數(shù)列.
(2)若數(shù)列{an},{bn}都是∂-數(shù)列,則{anbn}也是∂-數(shù)列.

查看答案和解析>>

同步練習(xí)冊(cè)答案