已知函數(shù)f(x)=
2x-1
2x+1

(Ⅰ)試判斷函數(shù)的單調(diào)性并加以證明;
(Ⅱ)對任意的x∈R,不等式f(x)<a恒成立,求實數(shù)a的取值范圍.
考點:函數(shù)恒成立問題,函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)利用函數(shù)的單調(diào)性定義判斷并證明,注意步驟要規(guī)范;
(2)結(jié)合(1)的單調(diào)性,求出函數(shù)f(x)的最大值,則問題可解.
解答: 解(Ⅰ)函數(shù)f(x)=
2x-1
2x+1
.定義域為R,函數(shù)f(x)在R上是增函數(shù).
設(shè)x1,x2是R內(nèi)任意兩個值,且x1<x2
f(x1)-f(x2)=
2x1-1
2x1+1
-
2x2-1
2x2+1
=
2(2x1-2x2)
(2x1+1)(2x2+1)
①.
又因為x1<x2,所以2x12x2,又2x1+1>0,2x2+1>0
所以①<0,即f(x1)-f(x2)<0,即f(x1)<f(x2).
故f(x)是R上的增函數(shù).
(Ⅱ)由題意,函數(shù)f(x)=
2x-1
2x+1
=1-
2
2x+1

顯然2x+1>1,所以0<
2
1+2x
<2

所以-1<1-
2
1+2x
<1

即-1<f(x)<1.
所以,若f(x)<a恒成立,只需a≥1.
點評:本題考查了函數(shù)單調(diào)性的證明方法,以及利用單調(diào)性研究最值,解決不等式恒成立問題的思路.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=sin(π-ωx)cosωx+cos2ωx的最小正周期為π,求ω的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某幾何體的三視圖如圖所示,則它的體積是(  )
A、
3
B、
3
C、π
D、
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點A(3,1)的直線l與圓C:x2+y2-4y-1=0相切于點B,則
CA
CB
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)平面向量
a
=(
3
2
,-
1
2
),
b
=(
1
2
,
3
2
)若存在不同時為零的兩個實數(shù)s、t及實數(shù)k,使
x
=
a
+(t2-k)
b
,
y
=-s
a
+t
b
,且
x
y

(1)求函數(shù)關(guān)系式S=f(t);
(2)若函數(shù)S=f(t)在[1,+∞]上是單調(diào)函數(shù),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(-5,5),
b
=(-3,4),則(
a
-
b
)在
b
方向上的投影等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
5
+
y2
4
=1,過右焦點F2的直線l交橢圓于A、B兩點,若|AB|=
4
5
9
,求直線l的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)x,y,z滿足x2+y2+z2=1,則xy+yz+zx的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=xlnx-
1
2
mx2-x,x∈R.
(Ⅰ)當(dāng)m=-2時,求函數(shù)f(x)的所有零點;
(Ⅱ)若f(x)有兩個極值點x1,x2,且x1<x2,求證:x1x2>e2(e為自然對數(shù)的底數(shù)).

查看答案和解析>>

同步練習(xí)冊答案