精英家教網 > 高中數學 > 題目詳情

求函數f(x)=數學公式的定義域.

解:由題意得:|x+1|≠0,解之得x≠-1,
故函數的定義域為{x|x≠-1}.
分析:求函數的定義域就是求使函數有意義的自變量的取值范圍,由函數的解析式可得|x+1|≠0,解出此不等式組的解集即可得到函數的定義域.
點評:本題考查函數的定義域的求法,理解函數的定義是解此類題的關鍵,求函數的定義域一般要注意一些規(guī)則,如:分母不為0,偶次根號下非負,對數的真數大于0等.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=x3-x,其圖象記為曲線C.
(1)求函數f(x)的單調區(qū)間;
(2)證明:若對于任意非零實數x1,曲線C與其在點P1(x1,f(x1))處的切線交于另一點P2(x2,f(x2)),曲線C與其在點P2(x2,f(x2))處的切線交于另一點P3(x3,f(x3)),線段P1P2,P2P3與曲線C所圍成封閉圖形的面積分別記為S1,S2,則
S1S2
為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=ax+
b
x
,曲線y=f(x)在點M(
3
,f(
3
))
處的切線方程為2x-3y+2
3
=0

(Ⅰ)求f(x)的解析式;       
(Ⅱ)求函數f(x)的單調遞減區(qū)間
(Ⅲ)證明:曲線y=f(x)上任一點處的切線與直線x=0和直線y=x所圍成的三角形面積為定值,并求此定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=ax-
b
x
-2lnx,f(1)=0

(1)若函數f(x)在其定域義內為單調函數,求實數a的取值范圍;
(2)若函數f(x)的圖象在x=1處的切線的斜率為0,且an+1=f′(
1
an+1
)-nan+1

①若a1≥3,求證:an≥n+2;
②若a1=4,試比較
1
1+a1
+
1
1+a2
+…+
1
1+an
2
5
的大小,并說明你的理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(Ⅰ)已知函數f(x)=x3-x,其圖象記為曲線C.
(i)求函數f(x)的單調區(qū)間;
(ii)證明:若對于任意非零實數x1,曲線C與其在點P1(x1,f(x1))處的切線交于另一點P2(x2,f(x2)),曲線C與其在點P2(x2,f(x2))處的切線交于另一點P3(x3,f(x3)),線段P1P2,P2P3與曲線C所圍成封閉圖形的面積記為S1,S2.則
S1S2
為定值;
(Ⅱ)對于一般的三次函數g(x)=ax3+bx2+cx+d(a≠0),請給出類似于(Ⅰ)(ii)的正確命題,并予以證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)若任意直線l過點F(0,1),且與函數f(x)=
1
4
x2
的圖象C交于兩個不同的點A,B,分別過點A,B作C的切線,兩切線交于點M,證明:點M的縱坐標是一個定值,并求出這個定值;
(2)若不等式f(x)≥g(x)恒成立,g(x)=alnx(a>o)求實數a的取值范圍;
(3)求證:
ln24
24
+
ln34
34
+
ln44
44
+…
lnn4
n4
2
e
,(其中e為無理數,約為2.71828).

查看答案和解析>>

同步練習冊答案