已知函數(shù)為自然對(duì)數(shù)的底數(shù)),為常數(shù)),是實(shí)數(shù)集 上的奇函數(shù).

   (1)求證:;

   (2)討論關(guān)于的方程:的根的個(gè)數(shù);

   (3)設(shè),證明:為自然對(duì)數(shù)的底數(shù)).

 

【答案】

(1)略

(2)①當(dāng)時(shí),方程無根;

②當(dāng)時(shí),方程只有一個(gè)根.

③當(dāng)時(shí),方程有兩個(gè)根.

(3)略

【解析】(1)證:令,

       令時(shí)

時(shí),. ∴

 即

(2)∵是R上的奇函數(shù) 

  ∴

  ∴  故

故討論方程的根的個(gè)數(shù).

的根的個(gè)數(shù).

注意,方程根的個(gè)數(shù)即交點(diǎn)個(gè)數(shù).

對(duì), ,

, 得

當(dāng)時(shí),; 當(dāng)時(shí),

,

當(dāng)時(shí),;  

當(dāng)時(shí),, 但此時(shí)

,此時(shí)以軸為漸近線。

①當(dāng)時(shí),方程無根;

②當(dāng)時(shí),方程只有一個(gè)根.

③當(dāng)時(shí),方程有兩個(gè)根.

(3)由(1)知,  

,

,于是,

 

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本小題共12分)已知函數(shù)為自然對(duì)數(shù)的底數(shù)),為常數(shù)),是實(shí)數(shù)集 上的奇函數(shù).(Ⅰ)求證:

(Ⅱ)討論關(guān)于的方程:的根的個(gè)數(shù);

(Ⅲ)設(shè),證明:為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年吉林通化第一中學(xué)高三上學(xué)期第二次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)其中為自然對(duì)數(shù)的底數(shù), .

(1)設(shè),求函數(shù)的最值;

(2)若對(duì)于任意的,都有成立,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆浙江省溫州市高二下學(xué)期期中考試文科數(shù)學(xué)(解析版) 題型:解答題

已知函數(shù).(為自然對(duì)數(shù)的底)

(Ⅰ)求的最小值;

(Ⅱ)是否存在常數(shù)使得對(duì)于任意的正數(shù)恒成立?若存在,求出的值;若不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆河北省高三第一學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知.函數(shù).e為自然對(duì)數(shù)的底

(1)當(dāng)時(shí)取得最小值,求的值;

(2)令,求函數(shù)在點(diǎn)P處的切線方程

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年天津市高三第二次月考理科數(shù)學(xué) 題型:解答題

已知函數(shù)其中為自然對(duì)數(shù)的底數(shù)

(1)當(dāng)時(shí),求曲線處的切線方程;

(2)若函數(shù)為單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;

(3)若時(shí),求函數(shù)的極小值。

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案