17.如圖,PA⊥平面ABCD,AD∥BC,∠ABC=90°,AB=BC=PA=1,AD=3,E是PB的中點(diǎn).
(1)求證:AE⊥平面PBC;    
(2)求三棱錐C-AED的體積.

分析 (1)推導(dǎo)出PA⊥BC,BC⊥AB,從而BC⊥面PAB,進(jìn)而BC⊥AE,再由AE⊥PB,能證明AE⊥平面PBC.
(2)在面PAB內(nèi)過E做EH∥PA,交AB于H,由VC-AED=VE-ACD,能求出三棱錐C-AED的體積.

解答 證明:(1)∵PA⊥平面ABCD,BC?面ABCD,
∴PA⊥BC,
又∠ABC=90°,∴BC⊥AB,
∵PA∩AB=A,∴BC⊥面PAB,
∵AE?平面PAB,∴BC⊥AE,
又AB=PA=1,E是PB的中點(diǎn).∴AE⊥PB,
∵PB∩BC=B,∴AE⊥平面PBC.
解:(2)在面PAB內(nèi)過E做EH∥PA,交AB于H,
∵PA⊥平面ABCD,∴EH⊥平面ABCD,
∴三棱錐C-AED的體積${V_{C-AED}}={V_{E-ACD}}=\frac{1}{3}•{S_{△ACD}}•EH=\frac{1}{4}$.

點(diǎn)評(píng) 本題考查線面垂直的證明,考查二棱錐的體積的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知關(guān)于x的不等式ax2+ax+2>0的解集為R,記實(shí)數(shù)a的所有數(shù)值構(gòu)成的集合為M.
(1)求M;
(2)若t>0,對(duì)?a∈M,有(a2-2a)t≤t2+3t-46,求t的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}的前n項(xiàng)和為Sn,a2=3,且2Sn=n(an+1),n∈N*
(1)求{an}的通項(xiàng)公式;
(2)數(shù)列{bn}滿足bn=pn-an,且{bn}的前n項(xiàng)和為Tn,若對(duì)任意n∈N*,都有Tn≤T6,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)數(shù)列{an}的前n項(xiàng)和Sn=2an-a1,且a1,a2+1,a3成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;   
(2)記數(shù)列$\{\frac{n}{a_n}\}$的前n項(xiàng)和Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖,在棱長為a的正方體ABCD-A1B1C1D1中,P為A1D1的中點(diǎn),Q為A1B1上任意一點(diǎn),E,F(xiàn)為CD上任意兩點(diǎn),且EF的長為定值,則以下四個(gè)值中為定值的編號(hào)是①②④.
①點(diǎn)P到平面QEF的距離;
②三棱錐P-QEF的體積;
③直線PQ與平面PEF所成的角;
④二面角P-EF-Q的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)x(單位:千克)對(duì)年消售量y(單位:t)和年利潤z(單位:千克)的影響,對(duì)近8年的宣傳費(fèi)xi和年銷售量yi(i=1,2,3,..8)數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
$\overline{x}$$\overline{y}$$\overline{w}$$\sum_{i=1}^{8}$(xi-$\overline{x}$)2 $\sum_{i=1}^{8}$(wi-$\overline{w}$)2$\sum_{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$)$\sum_{i=}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$)
46.65636.8289.81.61469108.8
表中:wi=$\sqrt{{x}_{i}}$$\overline{w}$=$\frac{1}{8}$$\sum_{i=1}^{8}$wi
(Ⅰ)根據(jù)散點(diǎn)圖判斷,y=a+bx與y=c+d $\sqrt{x}$,哪一個(gè)適宜作為年銷售量y關(guān)于年宣傳費(fèi)x的回歸方程類型(給出判斷即可,不必說明理由);
(Ⅱ)根據(jù)(I)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(Ⅲ)已知這種產(chǎn)品的年利潤z與x,y的關(guān)系為z=0.2y-x,根據(jù)(II)的結(jié)果回答下列問題:
(i)當(dāng)年宣傳費(fèi)x=49時(shí),年銷售量及年利潤的預(yù)報(bào)值時(shí)多少?
(ii)當(dāng)年宣傳費(fèi)x為何值時(shí),年利潤的預(yù)報(bào)值最大?并求出最大值
附:對(duì)于一組數(shù)據(jù)(u1,v1),(u2,v2)…..(un,vn),其回歸線$\widehat{v}$=α+βu的斜率和截距的最小二乘估計(jì)分別為:β=$\frac{\sum_{i=1}^{n}({u}_{1}-\overline{u})({v}_{1}-\overline{v})}{\sum_{i=1}^{n}({u}_{1}-\overline{u})^{2}}$,α=$\overline{v}$-β$\overline{u}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某幾何體的三視圖如圖所示,則該幾何體的外接球的體積為( 。  
A.12πB.4$\sqrt{3}π$C.12$\sqrt{3}π$D.$\frac{4}{3}$$\sqrt{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2+x,若f(2-a2)+f(a)>0,則實(shí)數(shù)a的取值范圍是(-1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.一輛卡車寬2.7米,要經(jīng)過一個(gè)半徑為4.5米的半圓形隧道,該隧道為雙向車道,中間有隔離帶,則這輛卡車的平頂車篷篷頂距離地面的高度不得超過( 。
A.1.4米B.3.0米C.3.6米D.4.5米

查看答案和解析>>

同步練習(xí)冊(cè)答案