已知
a
b
且|
a
|=1,|
b
|=2,則
a
b
為( 。
A、2
B、-2
C、±2
D、±
3
分析:
a
b
,則
a
,
b
同向或
a
,
b
反向,分類討論兩種情況下,
a
b
的值,再對分類討論所得的結(jié)論進行綜合分析,即可得到答案
解答:解:當
a
,
b
同向時,
a
b
=|
a
|•|
b
|=2
a
,
b
反向時,
a
b
=-|
a
|•|
b
|=-2
故選C
點評:如果兩個非量平面向量平行(共線),則它們的方向相同或相反,此時他們的夾角為0或π.當它們同向時,夾角為0,此時向量的數(shù)量積,等于他們模的積;當它們反向時,夾角為π,此時向量的數(shù)量積,等于他們模的積的相反數(shù).如果兩個向量垂直,則它們的夾角為
π
2
,此時向量的數(shù)量積,等于0.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知
a
=(sinθ,cosθ)、
b
=(
3
,1)
(1)若
a
b
,求tanθ的值;
(2)若f(θ)=|
a
+
b
|,△ABC的三個內(nèi)角A,B,C對應的三條邊分別為a、b、c,且a=f(0),b=f(-
π
6
),c=f(
π
3
),求
AB
AC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•松江區(qū)二模)已知雙曲線C的中心在原點,D(1,0)是它的一個頂點,
d
=(1,
2
)
是它的一條漸近線的一個方向向量.
(1)求雙曲線C的方程;
(2)若過點(-3,0)任意作一條直線與雙曲線C交于A,B兩點 (A,B都不同于點D),求證:
DA
DB
為定值;
(3)對于雙曲線Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E為它的右頂點,M,N為雙曲線Γ上的兩點(都不同于點E),且EM⊥EN,那么直線MN是否過定點?若是,請求出此定點的坐標;若不是,說明理由.然后在以下三個情形中選擇一個,寫出類似結(jié)論(不要求書寫求解或證明過程).
情形一:雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
及它的左頂點;
情形二:拋物線y2=2px(p>0)及它的頂點;
情形三:橢圓
x2
a2
+
y2
b2
=1(a>b>0)
及它的頂點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b,c為三條不同的直線,且a?平面M,b?平面N,M∩N=c,則下面四個命題中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知||=|a|,||=b且|a|=|b|=8,∠AOB=60°,則|a+b|=______,|a-b|=_____,aa+b所在直線的夾角__________.

查看答案和解析>>

同步練習冊答案