6.已知數(shù)列{an}中,a1=1,an+1=$\frac{a_n}{{{a_n}+4}}$(n∈N*).
(1)求a2、a3的值;
(2)求{an}的通項(xiàng)公式an;
(3)設(shè)bn=(4n-1)•$\frac{n}{2^n}$•an,記其前n項(xiàng)和為Tn,若不等式2n-1λ<2n-1Tn+$\frac{3n}{2}$對(duì)一切n∈N*恒成立,求λ的取值范圍.

分析 (1)由題意,代入可得求a2、a3的值;
(2)由數(shù)列{an}中,a1=1,an+1=$\frac{a_n}{{{a_n}+4}}$可得{$\frac{1}{{a}_{n}}$+$\frac{1}{3}$}是首項(xiàng)為$\frac{4}{3}$,公比為4的等比數(shù)列,即可得出{an}的通項(xiàng)公式an;
(3)由(2)可知:bn,利用“錯(cuò)位相減法”即可得出Tn,利用不等式2n-1λ<2n-1Tn+$\frac{3n}{2}$對(duì)一切n∈N*恒成立,求λ的取值范圍.

解答 解:(1)由題意,代入可得a2=$\frac{1}{5}$,a3=$\frac{2}{21}$;
(2)∵an+1=$\frac{a_n}{{{a_n}+4}}$,
∴$\frac{1}{{{a_{n+1}}}}=\frac{{{a_n}+4}}{a_n}=\frac{4}{a_n}+1$,
∴$\frac{1}{{{a_{n+1}}}}+\frac{1}{3}=4({\frac{1}{a_n}+\frac{1}{3}})\\∴數(shù)列\(zhòng)left\{{\frac{1}{a_n}+\frac{1}{3}}\right\}是以\frac{4}{3}為首項(xiàng),4為公比的等比數(shù)列\(zhòng)\∴\frac{1}{a_n}+\frac{1}{3}=\frac{4^n}{3}∴{a_n}=\frac{3}{{{4^n}-1}}({(7分)})\\(3)代入{a_n}可得{b_n}=\frac{3n}{2^n},由錯(cuò)位相減法可得{T_n}=6-\frac{6+3n}{2^n}\\∵{2^{n-1}}λ<{2^{n-1}}{T_n}+\frac{3}{2}n,代入分離可得λ=6-\frac{6}{2^n}\\ 由函數(shù)的單調(diào)性可得關(guān)于n的函數(shù)單調(diào)遞增\\∴當(dāng)n=1時(shí),函數(shù)有最小值3$,
∴{$\frac{1}{{a}_{n}}$+$\frac{1}{3}$}是首項(xiàng)為$\frac{4}{3}$,公比為4的等比數(shù)列,
∴$\frac{1}{{a}_{n}}$+$\frac{1}{3}$=$\frac{{4}^{n}}{3}$,
∴$\frac{1}{{a}_{n}}$=$\frac{{4}^{n}}{3}$-$\frac{1}{3}$,
∴an=$\frac{3}{{4}^{n}-1}$;
(3)bn=(4n-1)•$\frac{n}{2^n}$•an=$\frac{3n}{{2}^{n}}$,
Tn=3($\frac{1}{2}$+$\frac{2}{{2}^{2}}$+…+$\frac{n}{{2}^{n}}$),
∴$\frac{1}{2}$Tn=3($\frac{1}{{2}^{2}}+\frac{2}{{2}^{3}}$+…+$\frac{n}{{2}^{n+1}}$),
兩式相減得$\frac{1}{2}$Tn=3($\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$-$\frac{n}{{2}^{n+1}}$)=3(1-$\frac{1}{{2}^{n}}$-$\frac{n}{{2}^{n+1}}$),
∴2n-1Tn=3(2n-1-$\frac{n}{2}$),
∵不等式2n-1λ<2n-1Tn+$\frac{3n}{2}$對(duì)一切n∈N*恒成立,
∴2n-1λ<3(2n-1),
∴λ<3(2-$\frac{1}{{2}^{n-1}}$),∴λ<3.

點(diǎn)評(píng) 熟練掌握等比數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式、“錯(cuò)位相減法”等是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如果對(duì)一切實(shí)數(shù)x、y,不等式$\frac{y}{4}$-cos2x≥asinx-$\frac{9}{y}$恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,$\frac{4}{3}$]B.[3,+∞)C.[-2$\sqrt{2}$,2$\sqrt{2}$]D.[-3,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.以下四個(gè)命題中不正確的是 (  )
A.$f(x)=\frac{|x|}{x}$是奇函數(shù)B.f(x)=x2,x∈(-3,3]是偶函數(shù)
C.f(x)=(x-3)2是非奇非偶函數(shù)D.y=x4+x2是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)函數(shù)f(x)=(x-1)ex-kx2(其中k∈R).
(Ⅰ) 若f(x)>0對(duì)x∈(1,+∞)恒成立,求實(shí)數(shù)k的取值范圍;
(Ⅱ) 當(dāng)k∈($\frac{1}{2}$,1]時(shí),求函數(shù)f(x)在[0,k]上的最大值M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知A={(x,y)|y=x-3},B={(x,y)|y=-x-5},則A∩B為( 。
A.{-1,4}B.{-1,-4}C.{(-1,4)}D.{(-1,-4)}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1的左、右焦點(diǎn)分別為F1,F(xiàn)2,離心率為$\frac{{\sqrt{2}}}{2}$,P是橢圓上一點(diǎn),且△PF1F2面積的最大值為1.
(I)求橢圓的方程;
(II)過F2的直線交橢圓于M,N兩點(diǎn),求$\overrightarrow{{F_2}M}$•$\overrightarrow{{F_2}N}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.對(duì)一批產(chǎn)品的長(zhǎng)度(單位:mm)進(jìn)行抽樣檢測(cè),如圖為檢測(cè)結(jié)果的頻率分布直方圖.根據(jù)標(biāo)準(zhǔn),產(chǎn)品長(zhǎng)度在區(qū)間[20,25)上的為一等品,在[15,20)和[25,30)上的為二等品,在[10,15)和[30,35)上的為三等品;
(Ⅰ)用頻率估計(jì)概率,現(xiàn)從該批產(chǎn)品中隨機(jī)抽取1件,求其為二等品的概率;
(Ⅱ)若該批產(chǎn)品有20件,從三等品中隨機(jī)抽取2件,求抽到的2件產(chǎn)品長(zhǎng)度均在[30,35)上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖所示,四棱錐P-ABCD的底面是邊長(zhǎng)為a的正方形,側(cè)棱PA⊥底面ABCD,在側(cè)面PBC內(nèi),有BE⊥PC于E,且BE=$\frac{{\sqrt{6}}}{3}$a.
(1)求證:PB⊥BC;
(2)試在AB上找一點(diǎn)F,使EF∥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知常數(shù)a,b∈R,且不等式x-alnx+a-b<0解集為空集,則ab的最大值為$\frac{1}{2}$e3

查看答案和解析>>

同步練習(xí)冊(cè)答案