在極坐標(biāo)系中,點(diǎn)M坐標(biāo)是(3,),曲線C的方程為;以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,斜率是-1的直線l 經(jīng)過點(diǎn)M.
(1)寫出直線l的參數(shù)方程和曲線C的直角坐標(biāo)方程;
(2)求證直線l和曲線C相交于兩點(diǎn)A、B,并求|MA|•|MB|的值.
【答案】分析:(1)先求點(diǎn)M的直角坐標(biāo)是(0,3),直線l傾斜角,從而可寫出直線l參數(shù)方程;利用將即坐標(biāo)方程化為直角坐標(biāo)方程;
(2)將直線的參數(shù)方程代入曲線C的直角坐標(biāo)方程,利用參數(shù)的幾何意義可解.
解答:解:(1)∵點(diǎn)M的直角坐標(biāo)是(0,3),直線l傾斜角是135,…(1分)
∴直線l參數(shù)方程是,即,…(3分)
即ρ=2(sinθ+cosθ),兩邊同乘以ρ化簡(jiǎn)得x2+y2-2x-2y=0,∴曲線C
的直角坐標(biāo)方程為x2+y2-2x-2y=0;…(5分)
(2)代入x2+y2-2x-2y=0,得,
∵△>0,∴直線l和曲線C相交于兩點(diǎn)A、B,…(7分)
設(shè)的兩個(gè)根是t1,t2,t1t2=3,
∴|MA|•|MB|=3.                  …(10分)
點(diǎn)評(píng):本題主要考查圓的極坐標(biāo)方程、參數(shù)方程與普通方程的互化,點(diǎn)到直線的距離公式.要求學(xué)生能在極坐標(biāo)系中用極坐標(biāo)刻畫點(diǎn)的位置,體會(huì)在極坐標(biāo)系和平面直角坐標(biāo)系中刻畫點(diǎn)的位置的區(qū)別,能進(jìn)行極坐標(biāo)和直角坐標(biāo)的互化.屬于中等題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在極坐標(biāo)系中,點(diǎn)M坐標(biāo)是(3,
π
2
),曲線C的方程為ρ=2
2
sin(θ+
π
4
)
;以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,斜率是-1的直線l 經(jīng)過點(diǎn)M.
(1)寫出直線l的參數(shù)方程和曲線C的直角坐標(biāo)方程;
(2)求證直線l和曲線C相交于兩點(diǎn)A、B,并求|MA|•|MB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年遼寧省大連市瓦房店高級(jí)中學(xué)高二(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

在極坐標(biāo)系中,點(diǎn)M坐標(biāo)是(3,),曲線C的方程為;以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,斜率是-1的直線l 經(jīng)過點(diǎn)M.
(1)寫出直線l的參數(shù)方程和曲線C的直角坐標(biāo)方程;
(2)求證直線l和曲線C相交于兩點(diǎn)A、B,并求|MA|•|MB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年遼寧省遼南協(xié)作體高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

在極坐標(biāo)系中,點(diǎn)M坐標(biāo)是(3,),曲線C的方程為;以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,斜率是-1的直線l 經(jīng)過點(diǎn)M.
(1)寫出直線l的參數(shù)方程和曲線C的直角坐標(biāo)方程;
(2)求證直線l和曲線C相交于兩點(diǎn)A、B,并求|MA|•|MB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年全國(guó)高考數(shù)學(xué)領(lǐng)航試卷1(理科)(解析版) 題型:解答題

在極坐標(biāo)系中,點(diǎn)M坐標(biāo)是(3,),曲線C的方程為;以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,斜率是-1的直線l 經(jīng)過點(diǎn)M.
(1)寫出直線l的參數(shù)方程和曲線C的直角坐標(biāo)方程;
(2)求證直線l和曲線C相交于兩點(diǎn)A、B,并求|MA|•|MB|的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案