已知函數(shù)f(x)是奇函數(shù),當(dāng)x>0時(shí),f(x)=-x,當(dāng)x<0時(shí),求f(x)的值.
考點(diǎn):函數(shù)解析式的求解及常用方法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先根據(jù)函數(shù)f(x)的奇偶性得出f(-x)與f(x)的關(guān)系,再根據(jù)x>0時(shí)f(x)的解析式,求出x<0時(shí)f(-x)的解析式,即可得出f(x)的解析式.
解答: 解:∵函數(shù)f(x)是奇函數(shù),∴f(-x)=-f(x);
又∵x>0時(shí),f(x)=-x,
∴x<0時(shí),-x>0,
∴f(-x)=-(-x)=x,
即-f(x)=x,
∴f(x)=-x;
即x<0時(shí),f(x)=-x.
點(diǎn)評:本題考查了應(yīng)用函數(shù)的奇偶性求函數(shù)解析式的問題,解題時(shí)應(yīng)靈活應(yīng)用函數(shù)的奇偶性進(jìn)行解答,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2-x,求f(0),f(-2),f(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)的定義域?yàn)锳,若存在非零實(shí)數(shù)t,使得對于任意x∈C(C⊆A)有x+t∈A,且f(x+t)≤f(x),則稱f(x)為C上的t度低調(diào)函數(shù).已知定義域?yàn)閇0,+∞)的函數(shù)f(x)=-|mx-3|,且f(x)為[0,+∞)上的6度低調(diào)函數(shù),那么實(shí)數(shù)m的取值范圍是( 。
A、[0,1]
B、[1,+∞)
C、(-∞,0)
D、(-∞,0]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的幾何體中,底面ABCD為菱形,∠BAD=60°,AA1
.
.
DD1
.
.
CC1∥BE,且AA1=AB,D1E⊥平面D1AC,AA1⊥底面ABCD.
(Ⅰ)求二面角D1-AC-E的大。
(Ⅱ)在D1E上是否存在一點(diǎn)B,使得A1P∥平面EAC,若存在,求
D1P
PE
的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)F(-1,0),直線l的方程為x=1,過點(diǎn)F的一條直線與以F為焦點(diǎn)、l為準(zhǔn)線的拋物線交于A(x1,y2)、B(x2,y2)兩點(diǎn),若x1+x2=-2,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知1≤a-b≤2,13≤2a-
b
2
≤20,則3a-
b
3
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,D為邊BC的中點(diǎn),則下列向量關(guān)系式正確的是( 。
A、
AD
-
AC
=
DC
B、
BD
+
DC
=
0
C、
AD
=
AB
+
AC
D、
AD
=
AB
+
1
2
BC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

x2+ax+1≤0對x∈[-1,1]恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知成等差數(shù)列的三個(gè)正數(shù)的和等于15,并且這三個(gè)數(shù)分別加上2,5,13后成為等比數(shù)列{bn}中的b3,b4,b5
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)求數(shù)列{
bn
2n-3(n+1)n
}
的前n項(xiàng)和為Sn

查看答案和解析>>

同步練習(xí)冊答案