【題目】已知數(shù)列滿足, ,其中, 為非零常數(shù).

(1)若, ,求證: 為等比數(shù)列,并求數(shù)列的通項公式;

(2)若數(shù)列是公差不等于零的等差數(shù)列.

①求實數(shù) 的值;

②數(shù)列的前項和構(gòu)成數(shù)列,從中取不同的四項按從小到大排列組成四項子數(shù)列.試問:是否存在首項為的四項子數(shù)列,使得該子數(shù)列中的所有項之和恰好為2017?若存在,求出所有滿足條件的四項子數(shù)列;若不存在,請說明理由.

【答案】(1)(2)①, , .② ,

【解析】試題分析:(1)利用等比數(shù)列定義證明,即尋找比例關(guān)系:利用 代入化簡可得.最后說明各項非零.(2)①令,2,3,根據(jù)等差數(shù)列性質(zhì)得 ,列出關(guān)于, 的二元一次方程組,解得, 的值;再驗證滿足題意. ②先求數(shù)列的前項和,再討論四項奇偶性:三個奇數(shù)一個偶數(shù)、或者一個奇數(shù)三個偶數(shù).將奇偶性代入化簡討論,直至確定.

試題解析:解:(1)當(dāng), 時, ,

.

,不然,這與矛盾,

為2為首項,3為公比的等比數(shù)列,

, .

(2)①設(shè) ,

,

對任意恒成立.

,2,3,解得, , , .

經(jīng)檢驗,滿足題意.

綜上, , , .

②由①知.

設(shè)存在這樣滿足條件的四元子列,觀察到2017為奇數(shù),這四項或者三個奇數(shù)一個偶數(shù)、或者一個奇數(shù)三個偶數(shù).

1°若三個奇數(shù)一個偶數(shù),設(shè), , , 是滿足條件的四項,

,

,這與1007為奇數(shù)矛盾,不合題意舍去.

2°若一個奇數(shù)三個偶數(shù),設(shè), , , 是滿足條件的四項,

, .

由504為偶數(shù)知, , 中一個偶數(shù)兩個奇數(shù)或者三個偶數(shù).

1)若 , 中一個偶數(shù)兩個奇數(shù),不妨設(shè), ,

,這與251為奇數(shù)矛盾.

2)若, , 均為偶數(shù),不妨設(shè), ,

,繼續(xù)奇偶分析知, , 中兩奇數(shù)一個偶數(shù),

不妨設(shè) , ,則 .

因為, 均為偶數(shù),所以為奇數(shù),不妨設(shè),

當(dāng)時, ,檢驗得 , ,

當(dāng)時, , ,檢驗得, , ,

當(dāng)時, , ,檢驗得, ,

, 或者, , , 或者, , , 滿足條件,

綜上所述, , 為全部滿足條件的四元子列.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(1)證明: ,直線都不是曲線的切線;

(2)若,使成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

在區(qū)間上的極小值等于,求

, .曲線交于, 兩點,求證: 中點處的切線斜率大于.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)曲線在點處的切線平行于軸,求實數(shù)的值;

(2)記

(i)討論的單調(diào)性;

(ii)若, 上的最小值,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中點在原點,焦點在軸上,離心率,以兩個焦點和短軸的兩個端點為頂點的四邊形的周長為8,面積為.

(1)求橢圓的方程;

(2)過原點的兩條直線 ,交橢圓 , , 四點,若,求四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),將曲線上各點的橫坐標(biāo)都縮短為原來的倍,縱坐標(biāo)坐標(biāo)都伸長為原來的倍,得到曲線,在極坐標(biāo)系(與直角坐標(biāo)系取相同的單位長度,且以原點為極點,以軸非負(fù)半軸為極軸)中,直線的極坐標(biāo)方程為

(1)求直線和曲線的直角坐標(biāo)方程;

(2)設(shè)點是曲線上的一個動點,求它到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),將曲線上各點的橫坐標(biāo)都縮短為原來的倍,縱坐標(biāo)坐標(biāo)都伸長為原來的倍,得到曲線,在極坐標(biāo)系(與直角坐標(biāo)系取相同的單位長度,且以原點為極點,以軸非負(fù)半軸為極軸)中,直線的極坐標(biāo)方程為

(1)求直線和曲線的直角坐標(biāo)方程;

(2)設(shè)點是曲線上的一個動點,求它到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的是( )

A. 設(shè)隨機變量,則

B. 線性回歸直線不一定過樣本中心點

C. 若兩個隨機變量的線性相關(guān)性越強,則相關(guān)系數(shù)的值越接近于1

D. 先把高三年級的2000名學(xué)生編號:1到2000,再從編號為1到50的50名學(xué)生中隨機抽取1名學(xué)生,其編號為,然后抽取編號為, , ,……的學(xué)生,這樣的抽樣方法是分層抽樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,且曲線處的切線方程為.

(1)求, 的值;

(2)求函數(shù)上的最小值;

(3)證明:當(dāng)時, .

查看答案和解析>>

同步練習(xí)冊答案