甲、乙兩人各擲一次骰子(均勻的正方體,六個面上分別為1,2,3,4,5,6點(diǎn)),所得點(diǎn)數(shù)分別為x,y
(1)求x<y的概率;
(2)求5<x+y<10的概率。

(1)(2)

解析試題分析:該問題屬古典概型,甲、乙兩人各擲一次骰子(均勻的正方體,六個面上分別為1,2,3,4,5,6點(diǎn)),所得點(diǎn)數(shù)分別為x,y,有36個基本事件,每個基本事件發(fā)生的概率都相等,且互斥;(1)統(tǒng)計(jì)出事件“x<y”所包含的基本事件的個數(shù)進(jìn)而求出
(2)統(tǒng)計(jì)出事件“5<x+y<10”所包含的基本事件的個數(shù)進(jìn)而求出
解:記基本事件為,則有


共36個基本事件
其中滿足的基本事件有
共15個.
滿足的基本事件有
共20個.
(1)的概率
(2)的概率
考點(diǎn):古典概率

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在某學(xué)校組織的一次籃球定點(diǎn)投籃訓(xùn)練中,規(guī)定每人最多投3次:在A處每投進(jìn)一球得3分,在B處每投進(jìn)一球得2分;如果前兩次得分之和超過3分即停止投籃,否則投第三次。某同學(xué)在A處的命中率q1為0.25,在B處的命中率為q2,該同學(xué)選擇先在A處投一球,以后都在B處投,用ξ表示該同學(xué)投籃訓(xùn)練結(jié)束后所得的總分,其分布列為

ξ
0
2
3
4
5
P
0.03
P1
P2
P3
P4
 
(1)求q2的值;
(2)求隨機(jī)變量ξ的數(shù)學(xué)期望E(ξ);
(3)試比較該同學(xué)選擇都在B處投籃得分超過3分與選擇上述方式投籃得分超過3分的概率的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(2014·洛陽模擬)現(xiàn)有一批產(chǎn)品共有10件,其中8件為正品,2件為次品.
(1)如果從中取出一件,然后放回,再取一件,求連續(xù)3次取出的都是正品的概率.
(2)如果從中一次取3件,求3件都是正品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為調(diào)查某社區(qū)居民的業(yè)余生活狀況,研究這一社區(qū)居民在20:00-22:00時間段的休閑方式與性別的關(guān)系,隨機(jī)調(diào)查了該社區(qū)80人,得到下面的數(shù)據(jù)表:

     休閑方式
性別  
看電視
看書
合計(jì)

10
50
60

10
10
20
合計(jì)
20
60
80
 
(1)將此樣本的頻率估計(jì)為總體的概率,隨機(jī)調(diào)查3名在該社區(qū)的男性,設(shè)調(diào)查的3人在這一時間段以看書為休閑方式的人數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望;
(2)根據(jù)以上數(shù)據(jù),我們能否在犯錯誤的概率不超過0.01的前提下,認(rèn)為“在20:00-22:00時間段居民的休閑方式與性別有關(guān)系”?
參考公式:K2,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k0)
0.15
0.10
0.05
0.025
0.010
k0
2.072
2.706
3.841
5.024
6.635
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙兩人各擲一次骰子(均勻的正方體,六個面上分別為1,2,3,4,5,6點(diǎn)),所得點(diǎn)數(shù)分別為x,y
(1)求x<y的概率;
(2)求5<x+y<10的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某中學(xué)在高一開設(shè)了數(shù)學(xué)史等4門不同的選修課,每個學(xué)生必須選修,且只能從中選一門.該校高一的3名學(xué)生甲、乙、丙對這4門不同的選修課的興趣相同.
(1)求3個學(xué)生選擇了3門不同的選修課的概率;
(2)求恰有2門選修課這3個學(xué)生都沒有選擇的概率;
(3)設(shè)隨機(jī)變量X為甲、乙、丙這三個學(xué)生選修數(shù)學(xué)史這門課的人數(shù),求X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

學(xué)校游園活動有這樣一個游戲項(xiàng)目:甲箱子里裝有3個白球、2個黑球,乙箱子里裝有1個白球、2個黑球,這些球除顏色外完全相同,每次游戲從這兩個箱子里各隨機(jī)摸出2個球,若摸出的白球不少于2個,則獲獎.(每次游戲結(jié)束后將球放回原箱)
(1)求在一次游戲中,①摸出3個白球的概率,②獲獎的概率;
(2)求在兩次游戲中獲獎次數(shù)X的分布列及數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

小波以游戲方式?jīng)Q定是參加學(xué)校合唱團(tuán)還是參加學(xué)校排球隊(duì),游戲規(guī)則為:以0為起點(diǎn),再從,(如圖)這8個點(diǎn)中任取兩點(diǎn)分別分終點(diǎn)得到兩個向量,記這兩個向量的數(shù)量積為X。若X=0就參加學(xué)校合唱團(tuán),否則就參加學(xué)校排球隊(duì)。

(1)求小波參加學(xué)校合唱團(tuán)的概率;
(2)求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲乙兩人進(jìn)行乒乓球比賽,各局相互獨(dú)立,約定每局勝者得1分,負(fù)者得0分,如果兩人比賽五局,乙得1分與得2分的概率恰好相等.
求乙在每局中獲勝的概率為多少?
假設(shè)比賽進(jìn)行到有一人比對方多2分或打滿6局時停止,用表示比賽停止時已打局?jǐn)?shù),求的期望.

查看答案和解析>>

同步練習(xí)冊答案