科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓的離心率為,直線:與以原點為圓心、以橢圓的短半軸長為半徑的圓相切.
(I)求橢圓的方程;
(II)設(shè)橢圓的左焦點為,右焦點,直線過點且垂直于橢圓的長軸,動直線垂直于點,線段垂直平分線交于點,求點的軌跡的方程;
(III)設(shè)與軸交于點,不同的兩點在上,且滿足求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省濟南市高三3月高考模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知橢圓的離心率為,且過點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)四邊形ABCD的頂點在橢圓上,且對角線A C、BD過原點O,若,
(i) 求的最值.
(ii) 求證:四邊形ABCD的面積為定值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆陜西省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知橢圓的離心率為,直線:與以原點為圓心、以橢圓的短半軸長為半徑的圓相切.
(I)求橢圓的方程;
(II)設(shè)橢圓的左焦點為,右焦點,直線過點且垂直于橢圓的長軸,動直線垂直于點,線段垂直平分線交于點,求點的軌跡的方程;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓的離心率為,且過點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)四邊形ABCD的頂點在橢圓上,且對角線AC、BD過原點O,若, (i) 求的最值.(ii)求四邊形ABCD的面積;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com