(13分) 已知等比數(shù)列{an}中,a2=2,a5=128.
(1) 求通項(xiàng)an;
(2) 若bn = log2an,數(shù)列{bn}的前n項(xiàng)和為Sn,且Sn = 360,求n的值.
(1) ana2·qn—2=2·4n—2=22n—3  ;(2) n=20為所求
本試題主要是考查了數(shù)列的概念和數(shù)列求和的綜合運(yùn)用。
(1)根據(jù)等比數(shù)列{an}中,首項(xiàng)和公比來(lái)表示已知中a2=2,a5=128.,,得到通項(xiàng)公式。
(2)結(jié)合上一問(wèn)的結(jié)論,bn=log222n-3=2n-3,然后利用等差數(shù)列求和得到結(jié)論。
解:(1) 設(shè)公比為q,由a2=2,a5=128及a5a2q3得 128=2q3,
q=4 ∴ana2·qn—2=2·4n—2=22n—3  ····················· 6分
(2) bn=log222n-3=2n-3 ·························· 8分
∴數(shù)列{bn}是以-1為首項(xiàng),2為公差的等差數(shù)列
∴Snn (-1)+n2-2n ····················· 11分
n2-2n=360得n1=20,n2=-18(舍)
n=20為所求 ······························ 13分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分7分)
已知等差數(shù)列{}的前n項(xiàng)和為Sn,且 bn-30
(1)求通項(xiàng);   (2)求數(shù)列{bn}的前n項(xiàng)和Tn的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列的前n項(xiàng)和為
(1)證明:數(shù)列是等差數(shù)列,并求;
(2)設(shè),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在每個(gè)三角形的頂點(diǎn)處各放置一個(gè)數(shù),使位于△ABC的三邊及平行于某邊的任一直線上的數(shù)(當(dāng)數(shù)的個(gè)數(shù)不少于3時(shí))都分別成等差數(shù)列.若頂點(diǎn)A,B,C處的三個(gè)數(shù)互不相同且和為l,則所有頂點(diǎn)上的數(shù)之和等于        。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(本小題滿(mǎn)分12分)已知數(shù)列滿(mǎn)足
(1)求的值;
(2)證明數(shù)列是等比數(shù)列,并求出數(shù)列的通項(xiàng)公式;
(3)若數(shù)列滿(mǎn)足),求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在等差數(shù)列中,已知,則          

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若兩個(gè)等差數(shù)列,的前n項(xiàng)和分別為,且滿(mǎn)足,則             .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

等差數(shù)列中,=_______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知數(shù)列為等差數(shù)列,數(shù)列2,m,n,3為等比數(shù)列,則x+y+mn的值為(     )
A.16B.11C.-11D.±11

查看答案和解析>>

同步練習(xí)冊(cè)答案