函數(shù)f(x)=3sin(2x-
π
3
)的圖象為C,如下結論中正確的是______
①圖象C關于直線x=
11
12
π對稱;
②圖象C關于點(
3
,0)對稱;
③函數(shù)即f(x)在區(qū)間(-
π
12
,
12
)內是增函數(shù);
④由y=3sin2x的圖角向右平移
π
3
個單位長度可以得到圖象C.
①、把x=
11
12
π
代入2x-
π
3
得,
11π
12
-
π
3
=
2
,故①正確;
②、把x=
3
代入2x-
π
3
得,
3
-
π
3
,故②正確;
③、當x∈(-
π
12
,
12
)
時,求得2x-
π
3
∈(-
π
2
,
π
2
)
,故③正確;
④、有條件得,f(x)=3sin(2x-
π
3
)=3sin2(x-
π
6
)
,故④不正確.
故答案為:①②③.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

將函數(shù)f(x)=2sin(2x-θ)-3的圖象F向右平移
π
6
,再向上平移3個單位,得到圖象F′,若F′的一條對稱軸方程是x=
π
4
,則θ的一個可能。ā 。
A.-
π
6
B.-
π
3
C.
π
2
D.
π
3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=
sin2x+cos2x+1
2cosx

(1)求f(x)的定義域和值域;
(2)若x∈(-
π
4
,
π
4
),且f(x)=
3
2
5
,求cos2x
的值.
(3)若曲線f(x)在點P(x0,f(x0))(-
π
2
x0
π
2
)
處的切線平行直線y=
6
2
x
,求x0的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)f(x)=sin(ωx+
π
6
)
的導函數(shù)y=f'(x)的部分圖象如圖所示:圖象與y軸交點P(0,
3
3
2
)
,與x軸正半軸的兩交點為A、C,B為圖象的最低點,則S△ABC=______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)f(x)=
3
sin(2x+ϕ)
,若f(a)=
3
,則f(a+
6
)
f(a+
π
12
)
的大小關系是( 。
A.f(a+
6
)
f(a+
π
12
)
B.f(a+
6
)
f(a+
π
12
)
C.f(a+
6
)
=f(a+
π
12
)
D.大小與a、ϕ有關

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設x∈R,函數(shù)f(x)=cos(ωx+ϕ)(ω>0,-
π
2
<ϕ<0
)的最小正周期為π,且f(
π
4
)=
3
2

(Ⅰ)求ω和ϕ的值;
(Ⅱ)在給定坐標系中作出函數(shù)f(x)在[0,π]上的圖象;
(Ⅲ)若f(x)>
2
2
,求x
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

要得到函數(shù)y=sin2x的圖象,只要將函數(shù)y=sin(2x-
π
4
)的圖象( 。
A.向左平移
π
4
單位
B.向右平移
π
4
單位
C.向左平移
π
8
單位
D.向右平移
π
8
單位

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

把函數(shù)f(x)=2sin(2x+φ)(0<φ<π)的圖象向左平移
π
6
個單位后得到偶函數(shù)g(x)的圖象.
(Ⅰ)求φ的值;
(Ⅱ)求函數(shù)h(x)=f(x-
π
12
)-g(x)的單調增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知,則的取值范圍是(    ).
    B     C     D  

查看答案和解析>>

同步練習冊答案