【題目】已知平面,,,分別為,上的點(diǎn),且,.
(1)求證:;
(2)若,直線與平面所成角的正弦值為,求二面角的余弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)先證明BC⊥平面PAB,可得BC⊥AD,證明AD⊥平面PBC,得PC⊥AD,再證明PC⊥平面ADE,即可證明PC⊥DE;
(2)過(guò)點(diǎn)B作BE∥AP,則BZ⊥平面ABC,分別以BA,BC,BZ所在直線為x軸,y軸,z軸建立空間直角坐標(biāo)系,設(shè),根據(jù)PC⊥平面ADE,可得是平面ADE的一個(gè)法向量,從而向量與所成的角的余弦值的絕對(duì)值為,可求PA的值,利用題目條件求出平面的一個(gè)法向量,利用夾角公式可得二面角的余弦值.
(1)證明:因?yàn)?/span>平面,∴,
又,,
∴平面,∴.
又,,
∴平面,∴.
又,,
∴平面,∴.
(2)過(guò)點(diǎn)作,則平面,如圖所示
分別以,,所在直線為軸,軸,軸建立空間直角坐標(biāo)系.
設(shè),則,,,
因?yàn)?/span>平面,
∴是平面的一個(gè)法向量,
∴向量與所成的角的余弦值的絕對(duì)值為,
又,
,
∴,∴.
在中,,又,
∴為中點(diǎn),∴,
∴,,
設(shè)平面的一個(gè)法向量為,
則,∴,∴,
又是平面的法向量,
∴,,
二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=|x﹣2|+|x+1|.
(1)解不等式f(x)≥4.
(2)若f(x)+f(y)≤6,求x+y的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)著名的數(shù)學(xué)家秦九韶在《數(shù)書九章》提出了“三斜求積術(shù)”.他把三角形的三條邊分別稱為小斜、中斜和大斜.三斜求積術(shù)就是用小斜平方加上大斜平方,送到中斜平方,取相減后余數(shù)的一半,自乘而得一個(gè)數(shù),小斜平方乘以大斜平方,送到上面得到的那個(gè)數(shù),相減后余數(shù)被4除,所得的數(shù)作為“實(shí)”,1作為“隅”,開平方后即得面積.所謂“實(shí)”、“隅”指的是在方程中,p為“隅”,q為“實(shí)”.即若的大斜、中斜、小斜分別為a,b,c,則.已知點(diǎn)D是邊AB上一點(diǎn),,,,,則的面積為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面為菱形,,平面,,點(diǎn)E,F分別為和的中點(diǎn).
(1)求證:直線平面;
(2)求點(diǎn)F到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知的直角頂點(diǎn)在軸上,點(diǎn)為斜邊的中點(diǎn),且平行于軸.
(Ⅰ)求點(diǎn)的軌跡方程;
(Ⅱ)設(shè)點(diǎn)的軌跡為曲線,直線與的另一個(gè)交點(diǎn)為.以為直徑的圓交軸于即此圓的圓心為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)在內(nèi)有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】古人云:“腹有詩(shī)書氣自華.”為響應(yīng)全民閱讀,建設(shè)書香中國(guó),校園讀書活動(dòng)的熱潮正在興起.某校為統(tǒng)計(jì)學(xué)生一周課外讀書的時(shí)間,從全校學(xué)生中隨機(jī)抽取名學(xué)生進(jìn)行問卷調(diào)査,統(tǒng)計(jì)了他們一周課外讀書時(shí)間(單位:)的數(shù)據(jù)如下:
一周課外讀書時(shí)間/ | 合計(jì) | |||||||||
頻數(shù) | 4 | 6 | 10 | 12 | 14 | 24 | 46 | 34 | ||
頻率 | 0.02 | 0.03 | 0.05 | 0.06 | 0.07 | 0.12 | 0.25 | 0.17 | 1 |
(1)根據(jù)表格中提供的數(shù)據(jù),求,,的值并估算一周課外讀書時(shí)間的中位數(shù).
(2)如果讀書時(shí)間按,,分組,用分層抽樣的方法從名學(xué)生中抽取20人.
①求每層應(yīng)抽取的人數(shù);
②若從,中抽出的學(xué)生中再隨機(jī)選取2人,求這2人不在同一層的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)討論的單調(diào)性;
(2)若對(duì)任意,都有恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為.
(1)求直線l的普通方程與曲線C的直角坐標(biāo)方程;
(2)設(shè)點(diǎn),直線l與曲線C交于不同的兩點(diǎn)A、B,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com